Skip to main content
Log in

Interaction energy for a fullerene encapsulated in a carbon nanotorus

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6–12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20–22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  MATH  Google Scholar 

  2. Baowan, D., Hill, J.M.: Force distribution for double-walled carbon nanotubes. In: Proceedings of 2006 International Conference On Nanoscience and Nanotechnology, Australia, pp. 681-684. IEEE (2006)

  3. Bakry, R., Vallant, R.M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C.W., Bonn, G.K.: Medicinal applications of fullerenes. Int. J. Nanomed. 2, 639–649 (2007)

    Google Scholar 

  4. Wong, B.S., Yoong, S.L., Jagusiak, A., Panczyk, T., Ho, H.K., Ang, W.H., Pastorin, Gi: Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65, 1964–2015 (2013)

    Article  Google Scholar 

  5. Chan, Y., Cox, B.J., Hill, J.M.: Carbon nanotori as traps for atoms and ions. Physica B 407, 3479–3483 (2012)

    Article  Google Scholar 

  6. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    Article  Google Scholar 

  7. Sano, M., Kamino, A., Okamura, J., Shinkai, S.: Ring closure of carbon nanotubes. Science 293, 1299–1301 (2001)

    Article  Google Scholar 

  8. Dunlap, B.I.: Connecting carbon tubules. Phys. Rev. B 46, 1933–1936 (1992)

    Article  Google Scholar 

  9. Itoh, S., Ihara, S.: Toroidal form of carbon \(\text{ C }_{360}\). Phys. Rev. B 47, 1703–1704 (1993)

    Article  Google Scholar 

  10. Lin, M.F., Chuu, D.S.: Persistent currents in toroidal carbon nanotubes. Phys. Rev. B 57, 6731–6737 (1998)

    Article  Google Scholar 

  11. Liu, C.P., Xu, N.: Magnetic response of chiral carbon nanotori: the dependence of torus radius. Physica B 403, 2884–2887 (2008)

    Article  Google Scholar 

  12. Yazgan, E., Tasci, E., Malcioglu, O.B., Erkoc, S.: Electronic properties of carbon nanotoroidal structures. J. Mol. Struct. Theochem. 681, 231–234 (2004)

    Article  Google Scholar 

  13. Tang, X.: Persistent current in a carbon nanotube torus encapsulated with a carbon ring. J. Phys. Condens. Matter 23, 105302 (2011)

    Article  Google Scholar 

  14. Lusk, M.T., Hamm, N.: Toroidal carbon nanotubes with encapsulated atomic metal loops. Phys. Rev. B 76, 125422 (2007)

    Article  Google Scholar 

  15. Malcolm, R.K., Boyd, P.J., McCoy, C.F., Muyphy, D.J.: Microbicide vaginal rings: technological challenges and clinical development. Adv. Drug Deliv. Rev. 103, 33–56 (2016)

    Article  Google Scholar 

  16. Huhtala, M., Kuronen, A., Kaski, K.: Computational studies of carbon nanotube structures. Comput. Phys. Commun. 147, 91–96 (2002)

    Article  MATH  Google Scholar 

  17. Han, J.: Toroidal single wall carbon nanotubes in fullerene crop circles. NASA Advanced Supercomputing Technical Report #NAS-97-015 (1997)

  18. Sumetpipat, K., Lee, R.K.F., Cox, B.J., Hill, J.M., Baowan, D.: Carbon nanotori and nanotubes encapsulating carbon atomic-chains. J. Math. Chem. 52, 1817–1830 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarapat, P., Thamwattana, N., Baowan, D.: Continuum modelling for adhesion between paint surfaces. Int. J. Adhes. Adhes. 70, 234–238 (2016)

    Article  Google Scholar 

  20. Chan, Y., Thamwattana, N., Hill, J.M.: Spiral motion of carbon atoms and \(\text{ C }_{60}\) fullerenes inside single-walled carbon nanotubes. IJTAMM 1, 176–193 (2009)

    Article  MATH  Google Scholar 

  21. Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces: Their Origin and Determination. Clarendon Press, Oxford (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangkamon Baowan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarapat, P., Baowan, D. & Hill, J.M. Interaction energy for a fullerene encapsulated in a carbon nanotorus. Z. Angew. Math. Phys. 69, 77 (2018). https://doi.org/10.1007/s00033-018-0972-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0972-3

Mathematics Subject Classification

Keywords

Navigation