Skip to main content

Advertisement

Log in

Influence of a wastewater treatment plant on mercury contamination and sediment characteristics in Vidy Bay (Lake Geneva, Switzerland)

  • RESEARCH ARTICLE - BASED ON MIR INVESTIGATIONS IN LAKE GENEVA
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Previous direct observations of the sediment surface in Vidy Bay, Lake Geneva (Switzerland), revealed a range of sediment characteristics in terms of colour, texture and morphology. Dives with the MIR submersibles during the éLEMO project permitted the exploration of a large portion of Vidy Bay. It is the most contaminated part of Lake Geneva, due to inputs of treated and untreated waters from a large wastewater treatment plant (WWTP). To evaluate the influence of WWTP effluent on mercury contamination and sediment characteristics, 14 sediment cores were retrieved in the vicinity of the wastewater treatment plant effluent. Total mercury concentrations in sediments ranged between 0.32 and 10.1 mg/kg. Inorganic mercury and monomethylmercury concentrations in overlying and pore waters were also measured. The total partition coefficients of mercury (logK d) ranged from 3.6 to 5.8. The monomethylmercury concentration in pore waters of surface sediments was a large proportion of the total mercury concentration (44 ± 25 %). A Spearman test showed a negative correlation between the distance to the wastewater treatment plant outlet and the concentrations of total mercury in sediments and pore waters. Visual observations from the submersible allowed recognizing six different types of sediment. The areal distribution of these different sediment types clearly showed the influence of the wastewater treatment plant outlet on the sediment surface patterns. However, no relationship with mercury concentrations could be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhtman Y, Martelletti L, Greanjean O, Lemmin U (2012) Collaborative Web-GIS platform for systematic exploration of Lake Geneva. In: Proceedings of the XXII Congress of the International Society for Photogrammetry and Remote Sensing, vol. XXXIX-B4, num. IV/1, p. 1–6, 25 August-1 September 2012, Melbourne, Australia

  • Bale AE (2000) Modeling aquatic mercury fate in Clear Lake. Calif J Environ Eng 126:153–163

    Article  CAS  Google Scholar 

  • Blank N, Hudson AG, Vonlanthen P, Seehausen O, Hammerschmidt CR, Senn DB (2013) Speciation leads to divergent methylmercury accumulation in sympatric whitefish. Aquat Sci 75:261–273

    Article  CAS  Google Scholar 

  • Blasco J, Saenz V, Gomez-Parra A (2000) Heavy metal fluxes at the sediment-water interface of three coastal ecosystems from south–west of the Iberian Peninsula. Sci Total Environ 247:189–199

    Article  CAS  PubMed  Google Scholar 

  • Bloom NS, Gill GA, Cappellino S, Dobbs C, Mcshea L, Driscoll C, Mason R, Rudd J (1999) Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environ Sci Technol 33:7–13

    Article  CAS  Google Scholar 

  • Bravo AG (2010) Mercury methylation and trophic transfer in contaminated freshwater systems. Université de Geneve, Dissertation

    Google Scholar 

  • Bravo AG, Bouchet S, Amouroux D, Pote J, Dominik J (2011) Distribution of mercury and organic matter in particle-size classes in sediments contaminated by a waste water treatment plant: Vidy Bay, Lake Geneva, Switzerland. J Environ Monitor 13:974–982

    Article  CAS  Google Scholar 

  • Clarkson TW (1993) Mercury—major issues in environmental-health. Environ Health Perspect 100:31–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria—principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cossa D, Harmelin-Vivien M, Mellon-Duval C, Loizeau V, Averty B, Crochet S, Chou L, Cadiou JF (2012) Influences of bioavailability, trophic position, and growth on methylmercury in hakes (Merluccius merluccius) from northwestern Mediterranean and northeastern Atlantic. Environ Sci Technol 46:4885–4893

    Article  CAS  PubMed  Google Scholar 

  • DeLaune RD, Jugsujinda A, Devai I, Patrick WH (2004) Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:1925–1933

    Article  CAS  PubMed  Google Scholar 

  • Dominik J, Loizeau JL, Span D (1992) Radioisotopic evidence of perturbations of recent sedimentary record in lakes: a word of caution for climate studies. Clim Dynam 6:145–152

    Article  Google Scholar 

  • Drott A, Lambertsson L, Björn E, Skyllberg U (2008) Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environ Sci Technol 42:153–158

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald WF, Mason RP, Vandal GM (1991) Atmospheric cycling and air–water exchange of mercury over midcontinental lacustrine regions. Water Air Soil Poll 56:745–767

    Article  CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microb 72:457–464

    Article  CAS  Google Scholar 

  • Gilmour C, Henry E (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Pollut 71:131–169

    Article  CAS  PubMed  Google Scholar 

  • Gilmour C, Henry E, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Girardclos S, Hilbe M, Corella JP, Loizeau JL, Kremer K, DelSontro T, Arantegui A, Moscariello A, Arlaud F, Akhtman Y, Anselmetti F, Lemmin U (2012) Searching the Rhone delta channel in Lake Geneva since François-Alphonse Forel. Arch Sci 65:103–118

    Google Scholar 

  • Hamelin S, Amyot M, Barkay T, Wang YP, Planas D (2011) Methanogens: principal methylators of mercury in Lake Periphyton. Environ Sci Technol 45:7693–7700

    Article  CAS  PubMed  Google Scholar 

  • Harada M (1995) Minamata disease—methylmercury poisoning in Japan caused by environmental-pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  PubMed  Google Scholar 

  • He TR, Lu J, Yang F, Feng XB (2007) Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. Sci Total Environ 386:53–64

    Article  CAS  PubMed  Google Scholar 

  • Hurley JP, Shafer MM, Cowell SE, Overdier JT, Hughes PE, Armstrong DE (1996) Trace metal assessment of Lake Michigan tributaries using low-level techniques. Environ Sci Technol 30:2093–2098

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour C, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microb 72:7919–7921

    Article  CAS  Google Scholar 

  • Langer CS, Fitzgerald WF, Visscher PT, Vandal GM (2001) Biogeochemical cycling of methylmercury at Barn Island Salt Marsh, Stonington, CT, USA. Wetl Ecol Manag 9:295–310

    Article  CAS  Google Scholar 

  • Loizeau JL, Arbouille D, Santiago S, Vernet JP (1994) Evaluation of a wide-range laser diffraction grain-size analyzer for use with sediments. Sedimentology 41:353–361

    Article  Google Scholar 

  • Loizeau JL, Pardos M, Monna F, Peytremann C, Haller L, Dominik J (2004) The impact of a sewage treatment plant’s effluent on sediment quality in a small bay in Lake Geneva (Switzerland-France). Part 2. Temporal evolution of heavy metals. Lakes Reserv Res Manag 9:53–63

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Con Tox 39:20–31

    Article  CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1995) Bioaccumulation of mercury and methylmercury. Water Air Soil Poll 80:915–921

    Article  CAS  Google Scholar 

  • Masson M, Tercier-Waeber ML (2013) Trace metal speciation at the sediment-water interface of the Vidy Bay: Influence of contrasting sediment characteristics. Aquat Sci (this issue)

  • Monperrus M, Tessier E, Veschambre S, Amouroux D, Donard O (2005) Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis. Anal Bioanal Chem 381:854–862

    Article  CAS  PubMed  Google Scholar 

  • Pak K, Bartha R (1998) Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria. Appl Environ Microb 64:1013–1017

    CAS  Google Scholar 

  • Pardos M, Benninghoff C, De Alencastro LF, Wildi W (2004) The impact of a sewage treatment plant’s effluent on sediment quality in a small bay in Lake Geneva (Switzerland–France). Part 1: spatial distribution of contaminants and the potential for biological impacts. Lakes Reserv Res Manage 9:41–52

    Article  CAS  Google Scholar 

  • Parks JM, Johs A, Podar M, Bridou R, Hurt RA, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335

    Article  CAS  PubMed  Google Scholar 

  • Pote J, Haller L, Loizeau JL, Bravo AG, Sastre V, Wildi W (2008) Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Bioresour Technol 99:7122–7131

    Article  CAS  PubMed  Google Scholar 

  • Rolfhus KR, Sakamoto HE, Cleckner LB, Stoor RW, Babiarz CL, Back RC, Manolopoulos H, Hurley JP (2003) Distribution and fluxes of total and methylmercury in Lake Superior. Environ Sci Technol 37:865–872

    Article  CAS  PubMed  Google Scholar 

  • Roos-Barraclough F, Givelet N, Martinez-Cortizas A, Goodsite ME, Biester H, Shotyk W (2002) An analytical protocol for the determination of total mercury concentrations in solid peat samples. Sci Total Environ 292:129–139

    Article  CAS  PubMed  Google Scholar 

  • Sauvain L, Bueche M, Junier T, Masson M, Wunderlin T, Kohler-Milleret R, Gascon Diez E, Loizeau JL, Tercier-Waeber ML, Junier P (2013) Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria. Aquat Sci (this issue)

  • Schafer J, Blanc G, Audry S, Cossa D, Bossy C (2006) Mercury in the Lot-Garonne River system (France): sources, fluxes and anthropogenic component. Appl Geochem 21:515–527

    Article  Google Scholar 

  • Scheulhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18

    Article  Google Scholar 

  • Siegel S (1956) Nonparametric statistics for the behavioral sciences. Kosaido Printing Co. Ltd, Tokyo

    Google Scholar 

  • Sturm M, Zwissig A, Piccard J (1984) Bio-erosive humpack-structures—an example of sediment/water interface alteration in Lake Geneva. In: proceeding of third Inter Symposium Interaction between Sediments and Water, CEP Consultants: 126

  • Száková J, Kolihová D, Miholová D, Mader P (2004) Single-purpose atomic absorption spectrometer AMA-254 for mercury determination and its performance in analysis of agricultural and environmental materials. Chem Pap 58:311–315

    Google Scholar 

  • Turner A, Millward GE, Le Roux SM (2004) Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Mar Chem 88:179–192

    Article  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Env Sci Tec 31:241–293

    Article  CAS  Google Scholar 

  • Vernet JP (1966) Prise de vue sous-lacustres dans le Léman lors de plongées du mésoscaphe “Auguste-Picard”. Bull Soc Vaudoise Sci Nat 69:287–292

    Google Scholar 

  • Vernet JP, Viel M (1984) Métaux lourds dans les sédiments lacustres. In: Commission Internationale pour la Protection des Eaux du Léman contre la Pollution (ed) Synthèse des travaux 1957–1982, Lausanne, pp 227–238

  • Watras CJ, Bloom NS (1992) Mercury and methylmercury in individual zooplankton—implications for bioaccumulation. Limnol Oceanogr 37:1313–1318

    Article  Google Scholar 

  • WHO/IPCS (1990) Methylmercury. Geneva, World Health Organization, International Programme on Chemical Safety. Environ health criteria 101 WHO library cataloguing in publication data

  • Wüest A, Anselmetti FS, Arey JS, Ibelings BW, Loizeau JL, Vennemann T, Lemmin U (2013) Into the abyss of Lake Geneva—interdisciplinary field investigations using the MIR submersibles. Aquat Sci (this issue)

  • Zahner P (1984) Sulfates. In: Commission Internationale pour la Protection des Eaux du Léman contre la Pollution (ed) Synthèse des travaux 1957–1982, Lausanne, pp 193–198

Download references

Acknowledgments

This publication is part of the international, interdisciplinary research project ELEMO (http://www.elemo.ch) to investigate the deep-waters of Lake Geneva using two Russian MIR submarines. Funding for this study was provided by the Fondation pour l’Etude des Eaux du Léman (FEEL). Additional funding for the work described in this paper was provided by Swiss National Science Foundation SNSF PDFMP2 123034 and 123048 (Léman-21). We are grateful for the support. We thank the Russian MIR crew members (www.elemo.ch/mir-team) for their excellent performance and the SAGRAVE team who provided and operated the platform from which the dives were carried out. We also thank Ulrich Lemmin and Jean-Denis Bourquin for project coordination. The service of Mikhail Kranoperov (Russian Honorary Consulate) as liaison is greatly appreciated. Philippe Arpagaus piloted the “La Licorne” scientific vessel for supplementary sampling. Marylou Tercier-Waeber for helping in supplementary sampling and writing advises. The manuscript greatly benefits from comments of two anonymous reviewers and Alfred Wüest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gascon Diez.

Additional information

This article is part of the special issue “éLEMO – investigations using MIR submersibles in Lake Geneva”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gascon Diez, E., Bravo, A.G., à Porta, N. et al. Influence of a wastewater treatment plant on mercury contamination and sediment characteristics in Vidy Bay (Lake Geneva, Switzerland). Aquat Sci 76 (Suppl 1), 21–32 (2014). https://doi.org/10.1007/s00027-013-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0325-4

Keywords

Navigation