Skip to main content
Log in

Community structure in boreal lakes with recurring blooms of the nuisance flagellate Gonyostomum semen

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Blooms of the nontoxic raphidophyte Gonyostomum semen have shown a recent increase in frequency and distribution in the Fennoscandian region. Due to large cell size and several grazer-avoidance strategies, G. semen is hypothesized to be inedible for most zooplankton species and therefore may constitute a bottleneck for the transfer of energy and nutrients in pelagic food webs. Repression of other phytoplankton through increased competition and induced mortality could further exacerbate this effect. In a field study of four lakes with recurring blooms of G. semen and four lakes without blooms, we found significant differences in community structure between the two lake groups during the bloom period. Bloom-lakes had lower biovolumes of small chrysophytes and chlorophytes and zooplankton assemblages were predominated by small, potentially bacterivorous cladocerans, suggesting a limited availability of edible phytoplankton and an increased importance of microbial pathways during G. semen blooms. Low biovolumes of large cladocerans in bloom-lakes may be due to interference of G. semen with filter feeding. Moreover, high abundances of the phantom midge Chaoborus flavicans in bloom-lakes suggest that the flow of energy and nutrients is directed more towards this invertebrate predator than fish. This could have negative impacts on fish populations, especially if bloom periods are prolonged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726

    Article  Google Scholar 

  • Angeler D, Trigal C, Drakare S, Johnson R, Goedkoop W (2010) Identifying resilience mechanisms to recurrent ecosystem perturbations. Oecologia 164(1):231–241. doi:10.1007/s00442-010-1640-2

    Article  PubMed  Google Scholar 

  • Bērziņš B, Bertilsson J (1990) Occurrence of limnic micro-crustaceans in relation to pH and humic content in Swedish water bodies. Hydrobiologia 199(1):65–71. doi:10.1007/bf00007834

    Article  Google Scholar 

  • Bērziņš B, Pejler B (1987) Rotifer occurrence in relation to pH. Hydrobiologia 147(1):107–116. doi:10.1007/bf00025733

    Article  Google Scholar 

  • Blomqvist P, Herlitz E (1998) Methods for quantitative assessment of phytoplankton in freshwaters, part 2. Swedish EPA, Stockholm

    Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbrichtilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Nor J Zool 24(4):419–456

    Google Scholar 

  • Brett MT (1989) Zooplankton communities and acidification processes (a review). Water Air Soil Pollut 44(3):387–414. doi:10.1007/bf00279267

    Article  CAS  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos 111 (D12106). doi:10.1029/2005JD006548

  • Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150(3692):28–35. doi:10.1126/science.150.3692.28

    Article  PubMed  CAS  Google Scholar 

  • Chang KH, Doi H, Nishibe Y, Nakano S (2010) Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. J Limnol 69 (2):209-216. doi:10.3274/jl10-69-2-03

  • Clarke KR, Green RH (1988) Statistical design and analysis for a biological effects study. Mar Ecol Prog Ser 46(1–3):213–226. doi:10.3354/meps046213

    Article  Google Scholar 

  • Cronberg G, Lindmark G, Björk S (1988) Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes—an effect of acidification? Hydrobiologia 161:217–236. doi:10.1007/BF00044113

    Article  CAS  Google Scholar 

  • Demott WR, Watson MD (1991) Remote detection of algae by copepods—responses to algal size, odors and motility. J Plankton Res 13(6):1203–1222. doi:10.1093/plankt/13.6.1203

    Article  Google Scholar 

  • DeMott WR, Gulati RD, Donk EV (2001) Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol Oceanogr 46(8):2054–2060

    Article  Google Scholar 

  • Estlander S, Nurminen L, Olin M, Vinni M, Immonen S, Rask M, Ruuhijärvi J, Horppila J, Lehtonen H (2010) Diet shifts and food selection of perch Perca fluviatilis and roach Rutilus rutilus in humic lakes of varying water colour. J Fish Biol 77(1):241–256. doi:10.1111/j.1095-8649.2010.02682.x

    Article  PubMed  CAS  Google Scholar 

  • Figueroa RI, Rengefors K (2006) Life cycle and sexuality of the freshwater raphidophyte Gonyostomum semen (Raphidophyceae). J Phycol 42(4):859–871. doi:10.1111/j.1529-8817.2006.00240.x

    Article  Google Scholar 

  • Gliwicz ZM, Lampert W (1990) Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71(2):691–702. doi:10.2307/1940323

    Article  Google Scholar 

  • Gutseit K, Berglund O, Granéli W (2007) Essential fatty acids and phosphorus in seston from lakes with contrasting terrestrial dissolved organic carbon content. Freshw Biol 52(1):28–38. doi:10.1111/j.1365-2427.2006.01668.x

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4 (1):9

  • Hanazato T, Yasuno M (1989) Zooplankton community structure driven by vertebrate and invertebrate predators. Oecologia 81(4):450–458. doi:10.1007/bf00378951

    Article  Google Scholar 

  • Havens KE (1991) Summer zooplankton dynamics in the limnetic and littoral zones of a humic acid lake. Hydrobiologia 215(1):21–29. doi:10.1007/bf00005897

    Article  Google Scholar 

  • Iwabuchi T, Urabe J (2010) Phosphorus acquisition and competitive abilities of two herbivorous zooplankton, Daphnia pulex and Ceriodaphnia quadrangula. Ecol Res 25(3):619–627. doi:10.1007/s11284-010-0692-4

    Article  Google Scholar 

  • Jäger IS, Hölker F, Flöder S, Walz N (2011) Impact of Chaoborus flavicans -predation on the zooplankton in a mesotrophic lake—a three year study. Int Rev Hydrobiol 96(2):191–208. doi:10.1002/iroh.201011253

    Article  Google Scholar 

  • Johansson J-Å, Olofsson H, Ramberg L (1976) Studier av zooplanktons konsumtion i Botjärn. Limnologiska institutionen, Uppsala universitet, Uppsala

    Google Scholar 

  • Kajak Z, Rybak J (1979) The feeding of Chaoborus flavicans Meigen (Diptera, Chaoboridae) and its predation on lake zooplankton. Internationale Revue der gesamten Hydrobiologie und Hydrographie 64(3):361–378. doi:10.1002/iroh.19790640310

    Article  Google Scholar 

  • Kearns C, Hairston N, Kesler D (1996) Particle transport by benthic invertebrates: its role in egg bank dynamics. Hydrobiologia 332(1):63–70. doi:10.1007/BF00020780

    Article  Google Scholar 

  • Klekowski RZ, Shushkina EA (1966) Ernährung, Atmung, Wachstum und Energie-Umformung in Macrocyclops albidus Jurine. Verh Internat Verein Limnol 16:399–418

    Google Scholar 

  • Kritzberg ES, Cole JJ, Pace MM, Graneli W (2005) Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquat Microb Ecol 38(2):103–111. doi:10.3354/ame038103

    Article  Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10(2):113–390. doi:10.1080/20026491051695

    Article  Google Scholar 

  • Lebret K, Fernandez MF, Hagman CHC, Rengefors K, Hansson L-A (2012) Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen. Limnol Oceanogr 57(3):727–734. doi:10.4319/lo.2012.57.3.0727

    Article  Google Scholar 

  • Lepistö L, Antikainen S, Kivinen J (1994) The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia 273(1):1–8. doi:10.1007/BF00126764

    Article  Google Scholar 

  • Lewis WM, Wurtsbaugh WA (2008) Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int Rev Hydrobiol 93(4–5):446–465. doi:10.1002/iroh.200811065

    Article  CAS  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450 (7169):537-U539. doi:10.1038/nature06316

    Google Scholar 

  • Moore MV, Yan ND, Pawson T (1994) Omnivory of the larval phantom midge (Chaoborus spp.) and its potential significance for freshwater planktonic food webs. Can J Zool 72(11):2055–2065. doi:10.1139/z94-275

    Article  Google Scholar 

  • Olrik K, Blomqvist P, Brettum P, Cronberg G, Eloranta P (1998) Methods for quantitative assessment of phytoplankton in freshwaters, part I, Report 4860. Swedish EPA, Stockholm

    Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334. doi:10.1016/j.hal.2011.10.027

    Article  Google Scholar 

  • Pace ML, Porter KG, Feig YS (1983) Species- and age-specific differences in bacterial resource utilization by two co-occurring cladocerans. Ecology 64(5):1145–1156. doi:10.2307/1937825

    Article  Google Scholar 

  • Peltomaa E, Ojala A (2010) Size-related photosynthesis of algae in a strongly stratified humic lake. J Plankton Res 32(3):341–355. doi:10.1093/plankt/fbp123

    Article  Google Scholar 

  • Persaud AD, Dillon PJ (2010) Ontogenetic differences in isotopic signatures and crop contents of Chaoborus. J Plankton Res 32(1):57–67. doi:10.1093/plankt/fbp099

    Article  CAS  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52(2):137–154. doi:10.1086/409852

    Article  Google Scholar 

  • Rengefors K, Pålsson C, Hansson L-A, Heiberg L (2008) Cell lysis of competitors and osmotrophy enhance growth of the bloom-forming alga Gonyostomum semen. Aquat Microb Ecol 51(1):87–96. doi:10.3354/Ame01176

    Article  Google Scholar 

  • Rengefors K, Weyhenmeyer GA, Bloch I (2012) Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18:65–73. doi:10.1016/j.hal.2012.04.005

    Article  Google Scholar 

  • Shei P, Iwakuma T, Fujii K (1988) Feeding of Chaoborus flavicans larvae Diptera Chaoboridae on Ceratium hirundinella and Daphnia rosea in a eutrophic pond. Jpn J Limnol 49(4):227–236

    Article  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-Model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106(4):433–471

    Google Scholar 

  • Stenson JAE, Svensson J-E, Cronberg G (1993) Changes and interactions in the pelagic community in acidified lakes in Sweden. Ambio 22(5):277–282

    Google Scholar 

  • Teraguchi M, Northcote TG (1966) Vertical distribution and migration of Chaoborus flavicans larvae in Corbett Lake, British Columbia. Limnol Oceanogr 11(2):164–176. doi:10.2307/2833421

    Article  Google Scholar 

  • Trigal C, Goedkoop W, Johnson RK (2011) Changes in phytoplankton, benthic invertebrate and fish assemblages of boreal lakes following invasion by Gonyostomum semen. Freshw Biol 56(10):1937–1948. doi:10.1111/j.1365-2427.2011.02615.x

    Article  CAS  Google Scholar 

  • Trigal C, Hallstan S, Johansson KSL, Johnson RK (2013) Factors affecting occurrence and bloom formation of the nuisance flagellate Gonyostomum semen in boreal lakes. Harmful Algae (accepted)

  • Vanderploeg HA, Paffenhöfer G-A, Liebig JR (1988) Diaptomus vs. net phytoplankton: effects of algal size and morphology on selectivity of a behaviorally flexible, omnivorous copepod. Bull Mar Sci 43(3):377–394

    Google Scholar 

  • Wilander A, Johnson RK, Goedkoop W (2003) Riksinventering 2000: En synoptisk studie av vattenkemi och bottenfauna i svenska sjöar och vattendrag. Department of Environmental Assessment, Swedish University of Agricultural Sciences, Report 2003:1, Uppsala, Sweden

  • Williamson CE, Sanders RW, Moeller RE, Stutzman PL (1996) Utilization of subsurface food resources for zooplankton reproduction: implications for diel vertical migration theory. Limnol Oceanogr 41(2):224–233

    Article  Google Scholar 

  • Wissel B, Boeing WJ, Ramcharan CW (2003) Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnol Oceanogr 48(5):1965–1976

    Article  Google Scholar 

  • Zaret TM, Suffern JS (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21(6):804–813

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the many persons who assisted in the field and laboratory work: Peter Carlson, Simon Hallstan and Fredrik Pilström for field assistance, Marlen Sunna for analyzing phytoplankton samples, Björn Wiklund and Putte Olsson for sorting and Lars Eriksson for determining invertebrates. We would also like to thank Växjö municipality, Kronoberg county administrative board and landowners by the lakes for lending us boats, Värend’s Rescue Service for storing our field equipment and Kerstin Holmgren and the reviewers for constructive comments on earlier versions of the manuscript. The Swedish Environmental Protection Agency and the Swedish Agency for Marine and Water Management are acknowledged for making data available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin S. L. Johansson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, K.S.L., Trigal, C., Vrede, T. et al. Community structure in boreal lakes with recurring blooms of the nuisance flagellate Gonyostomum semen . Aquat Sci 75, 447–455 (2013). https://doi.org/10.1007/s00027-013-0291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0291-x

Keywords

Navigation