Skip to main content
Log in

A Spatiotemporal Classification of the Peruvian Precipitations Between 1990 and 2015

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Precipitation and its variations have great importance in water resource management and sustainable development. In this study, the Peruvian precipitations between January 1990 to October 2015, were used. The precipitations were classified under spatial, temporal, and spatiotemporal classes. For this aim, properties of the precipitation time series including the monthly mean, monthly standard deviation, and principal components at monthly and annual scale were evaluated. Results were projected on a map using the Kriging method. Later, the double mass curves of the monthly precipitation time series were used to classify the temporal changes in the precipitations. Thereafter, the Spearman rank-order correlation was used to evaluate the spatiotemporal changes in monthly and annual precipitation time series by projected t-values on the Peruvian map. Finally, precipitations time series were plotted against Köppen–Geiger climate class of each station and several large scale oscillations namely North Atlantic Oscillation (NAO), El Niño/Southern Oscillation (ENSO), Atlantic Multi-decadal Oscillation (AMO), and Pacific Decadal Oscillation (PDO) simultaneously. It was concluded that there are at least three major climatic regions in the country. Spatial classes, depicts that the Andes Ranges is a major role player in the climate of the country while the ENSO and PDO are the main drivers of the precipitation extremes. Results also indicated to an ascending changes in the amount of precipitation from west to east, while a descending changes were observed at Amazon forest near San Ramon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adeloye, A. J., & Montaseri, M. (2002). Preliminary streamflow data analyses prior to water resources planning study/analyses préliminaires des données de débit en vue d’une étude de planification des ressources en eau. Hydrological Sciences Journal, 47(5), 679–692.

    Article  Google Scholar 

  • Akkoyunlu, B. O., Baltaci, H., & Tayanc, M. (2019). Atmospheric conditions of extreme precipitation events in western Turkey for the period 2006–2015. Natural Hazards and Earth System Sciences, 19(1), 107–119.

    Article  Google Scholar 

  • Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., et al. (2001). The history of South American tropical precipitation for the past 25,000 years. Science, 291(5504), 640–643.

    Article  Google Scholar 

  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214.

    Article  Google Scholar 

  • Bendix, J. (2000). Precipitation dynamics in Ecuador and northern Peru during the 1991/92 El Nino: A remote sensing perspective. International Journal of Remote Sensing, 21(3), 533–548.

    Article  Google Scholar 

  • Bohlinger, P., Sorteberg, A., Liu, C., Rasmussen, R., Sodemann, H., & Ogawa, F. (2019). Multiscale characteristics of an extreme precipitation event over Nepal. Quarterly Journal of the Royal Meteorological Society, 145(718), 179–196.

    Article  Google Scholar 

  • Cavus, Y., & Aksoy, H. (2019). Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.124312.

    Article  Google Scholar 

  • Chavez, S. P., Silva, Y., & Barros, A. P. (2019). High-elevation monsoon precipitation processes in the Central Andes of Peru. Journal of Geophysical Research Atmospheres. https://doi.org/10.1002/essoar.10501134.1.

    Article  Google Scholar 

  • Christidis, N., Betts, R. A., & Stott, P. A. (2019). The extremely wet March of 2017 in Peru. Bulletin of the American Meteorological Society, 100(1), S31–S35.

    Article  Google Scholar 

  • Condom, T., Rau, P., & Espinoza, J. C. (2011). Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrological Processes, 25(12), 1924–1933.

    Article  Google Scholar 

  • Conrick, R., & Mass, C. F. (2019). An evaluation of simulated precipitation characteristics during OLYMPEX. Journal of Hydrometeorology, 20(6), 1147–1164.

    Article  Google Scholar 

  • Derin, Y., Nikolopoulos, E., & Anagnostou, E. N. (2019). Estimating extreme precipitation using multiple satellite-based precipitation products. In Extreme hydroclimatic events and multivariate hazards in a changing environment: A remote sensing approach (p 163). https://doi.org/10.1016/B978-0-12-814899-0.00007-9.

  • Devi, U., Shekhar, M. S., Singh, G. P., & Dash, S. K. (2020). Statistical method of forecasting of seasonal precipitation over the Northwest Himalayas: North Atlantic Oscillation as precursor. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02409-8.

    Article  Google Scholar 

  • Giorgi, F., Raffaele, F., & Coppola, E. (2019). The response of precipitation characteristics to global warming from climate projections. Earth System Dynamics, 10(1), 73–89.

    Article  Google Scholar 

  • Gocic, M., & Trajkovic, S. (2013). Analysis of precipitation and drought data in Serbia over the period 1980–2010. Journal of Hydrology, 494, 32–42.

    Article  Google Scholar 

  • Gonzalez, F. R., Raval, S., Taplin, R., Timms, W., & Hitch, M. (2019). Evaluation of impact of potential extreme rainfall events on mining in Peru. Natural Resources Research, 28(2), 393–408.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.

    Article  Google Scholar 

  • Kousari, M. R., Ekhtesasi, M. R., Tazeh, M., Naeini, M. A. S., & Zarch, M. A. A. (2011). An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology, 103(3–4), 321–335.

    Article  Google Scholar 

  • Lagos Enríquez, P., Silva Vidal, Y., Nickl, E., & Mosquera Vásquez, K. A. (2008). El Niño-related precipitation variability in Perú. Advances in Geophysics, 14, 231–237.

    Google Scholar 

  • Manzanas, R., & Gutiérrez, J. M. (2019). Process-conditioned bias correction for seasonal forecasting: A case-study with ENSO in Peru. Climate Dynamics, 52(3–4), 1673–1683.

    Article  Google Scholar 

  • Nourani, V., & Farboudfam, N. (2019). Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods. Environmental Research, 168, 306–318.

    Article  Google Scholar 

  • Nourani, V., Mehr, A. D., & Azad, N. (2018). Trend analysis of hydroclimatological variables in Urmia Lake Basin using hybrid wavelet Mann-Kendall and Şen tests. Environmental Earth Sciences, 77(5), 207.

    Article  Google Scholar 

  • Ochoa, A., Pineda, L., Crespo, P., & Willems, P. (2014). Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean region of Ecuador and Peru. Hydrology and Earth System Sciences, 18(8), 3179–3193.

    Article  Google Scholar 

  • Perry, L. B., Seimon, A., & Kelly, G. M. (2014). Precipitation delivery in the tropical high Andes of southern Peru: New findings and paleoclimatic implications. International Journal of Climatology, 34(1), 197–215.

    Article  Google Scholar 

  • Rai, P. K., Singh, G. P., & Dash, S. K. (2019). Projected change and variability assessment of Indian summer monsoon precipitation in South Asia CORDEX domain under high-emission pathway. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02373-3.

    Article  Google Scholar 

  • Rodríguez-Morata, C., Díaz, H. F., Ballesteros-Canovas, J. A., Rohrer, M., & Stoffel, M. (2019). The anomalous 2017 coastal El Niño event in Peru. Climate Dynamics, 52(9–10), 5605–5622.

    Article  Google Scholar 

  • Rougé, C., Ge, Y., & Cai, X. (2013). Detecting gradual and abrupt changes in hydrological records. Advances in Water Resources, 53, 33–44.

    Article  Google Scholar 

  • Saavedra, M., Junquas, C., Espinoza, J. C., & Silva, Y. (2020). Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmospheric Research, 234, 104711.

    Article  Google Scholar 

  • Shimada, I., Schaaf, C. B., Thompson, L. G., & Mosley-Thompson, E. (1991). Cultural impacts of severe droughts in the prehistoric Andes: Application of a 1,500-year ice core precipitation record. World Archaeology, 22(3), 247–270.

    Article  Google Scholar 

  • Tapley, T. D., Jr., & Waylen, P. R. (1990). Spatial variability of annual precipitation and ENSO events in western Peru. Hydrological Sciences Journal, 35(4), 429–446.

    Article  Google Scholar 

  • Teegavarapu, R. S. (2019). Changes and trends in precipitation extremes and characteristics: Links to climate variability and change. In Trends and changes in hydroclimatic variables (pp. 91–148). Elsevier. EISBN 9780128109861

  • Thompson, L. G., Mosley-Thompson, E., Bolzan, J. F., & Koci, B. R. (1985). A 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap Peru. Science, 229(4717), 971–973.

    Article  Google Scholar 

  • Vaheddoost, B., & Aksoy, H. (2017). Structural characteristics of annual precipitation in Lake Urmia Basin. Theoretical and Applied Climatology, 128(3–4), 919–932.

    Article  Google Scholar 

  • Vazifehkhah, S., & Kahya, E. (2019). Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the teleconnections of climate indices on a catchment scale. Agricultural Water Management, 217, 413–425.

    Article  Google Scholar 

  • Viale, M., & Nuñez, M. N. (2018). Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. Journal of Hydrometeorology. https://doi.org/10.1175/2010JHM1284.1.

    Article  Google Scholar 

  • Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (3rd ed.). London: Academic.

    Google Scholar 

  • World Meteorological Organization, WMO. (2012). Standardized precipitation index user guide. Geneva: World Meteorological Organization. ISBN 978-92-63-11091-6.

    Google Scholar 

  • Wu, Y., Ji, H., Wen, J., Wu, S. Y., Xu, M., Tagle, F., et al. (2019). The characteristics of regional heavy precipitation events over eastern monsoon China during 1960–2013. Global and Planetary Change, 172, 414–427.

    Article  Google Scholar 

  • Zhang, X., & Anagnostou, E. N. (2019). Evaluation of numerical weather model-based satellite precipitation adjustment in tropical mountainous regions. Journal of Hydrometeorology, 20(3), 431–445.

    Article  Google Scholar 

  • Zubieta, R., Getirana, A., Espinoza, J. C., & Lavado, W. (2015). Impacts of satellite-based precipitation datasets on rainfall-runoff modeling of the Western Amazon Basin of Peru and Ecuador. Journal of Hydrology, 528, 599–612.

    Article  Google Scholar 

  • Zubieta, R., Saavedra, M., Espinoza, J. C., Ronchail, J., Sulca, J., Drapeau, G., et al. (2019). Assessing precipitation concentration in the Amazon Basin from different satellite-based data sets. International Journal of Climatology, 39(7), 3171–3187.

    Article  Google Scholar 

  • Zubieta, R., Saavedra, M., Silva, Y., & Giráldez, L. (2017). Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River Basin: Central Andes of Peru. Stochastic Environmental Research and Risk Assessment, 31(6), 1305–1318.

    Article  Google Scholar 

Download references

Acknowledgements

The author appreciates the Republic of Peru’s National Service of Meteorology and Hydrology (SENAMHI) for providing the required data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Vaheddoost.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaheddoost, B. A Spatiotemporal Classification of the Peruvian Precipitations Between 1990 and 2015. Pure Appl. Geophys. 177, 4509–4520 (2020). https://doi.org/10.1007/s00024-020-02454-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02454-8

Keywords

Navigation