Skip to main content
Log in

Introduction to “Twenty Five Years of Modern Tsunami Science Following the 1992 Nicaragua and Flores Island Tsunamis, Volume I”

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Twenty-two papers on tsunamis are included in the Pure and Applied Geophysics topical issue “Twenty five years of modern tsunami science following the 1992 Nicaragua and Flores Island tsunamis: Volume I,” reporting on the frontiers of tsunami science and research. The first three papers overview significant tsunamis of 1992–2018 and discuss the problems of tsunami cataloguing. The main focus of the next four papers is on specific details of historical tsunami events and field surveys. First, three papers are related to thorough analyses of several historical events based on macroseismic, seismological, and tsunami observations, tide gauge data, and modelling results: the 1907 Sumatra “tsunami earthquake,” the 1941 Andaman Islands earthquake, and five great tsunamis in the Pacific Ocean (1946, 1952, 1957, 1960 and 1964). The last paper of the section concerns results of the field survey of the 2017 Bodrum-Kos tsunami. The reconstruction of the tsunami sources is the main target of the four following papers, with four events examined in detail: the historical 1810 Baja California, 1992 Flores Island, 2012 Haida Gwaii and 2015 Chilean (Illapel) tsunamis. A set of three papers address problems associated with landslide-generated tsunamis in three different regions: a modelling of the 2017 landslide and tsunami at Karrat Fjord, Greenland; a probabilistic analysis of the hazard from the Indus Canyon in the NW Indian Ocean; and a study of the landslide-induced tsunami hazard along the US East Coast. The next section, including three papers, reports on comparisons between different types of tsunami models, on numerical modelling of tsunami waves in the Caspian Sea, and on the modelling of magnetic signals at Easter Island, following the 2010 and 2015 Chilean tsunamis. The last group of five papers discusses tsunami hazard assessment and warning for various regions of the world oceans, including Alaska, the eastern and western Mediterranean, Australia, the Northeast Atlantic and the entire Pacific Ocean; one specific aspect of these studies is the compilation and efficient application of observed data, in particular, from DARTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. DART is an effective network of deep-ocean stations, elaborated by NOAA for monitoring tsunami waves and early tsunami warning.

  2. This network was previously known as NEPTUNE-Canada (Canadian North-East Pacific Underwater Networked Experiments); it was established by the University of Victoria, British Columbia, Canada. (http://www.oceannetworks.ca/).

References

  • Allgeyer, S., & Cummins, P. (2014). Numerical tsunami simulation including elastic loading and seawater density stratification. Geophysical Research Letters, 41(7), 2368–2375. https://doi.org/10.1002/2014gl059348.

    Article  Google Scholar 

  • Arcos, N. P., Dunbar, P. K., Stroker, K. J., & Kong, L. S. L. (2019). The impact of post-tsunami surveys on the NCEI/WDS global historical tsunami database. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02191-7. (this issue).

    Google Scholar 

  • Atwater, B. F., Musumi-Rokkaku, S., Satake, K., Tsuji, Y., Ueda, K., & Yamaguchi, D. K. (2005). The orphan tsunami of 1700: Japanese clues to a parent earthquake in North America. US Geological Survey. https://doi.org/10.3133/pp1707.

  • Bardet, J.-P., Synolakis, C. E., Davies, H. L., Imamura, F., & Okal, E. A. (2003). Landslide tsunamis: Recent findings and research directions. Pure and Applied Geophysics, 160(10–11), 1793–1809. https://doi.org/10.1007/s00024-003-2406-0.

    Article  Google Scholar 

  • Bernard, E., & Robinson, A. (Eds.) (2009). Tsunamis. In The Sea, ideas and observations on progress in the study of the seas (Vol. 15). Cambridge: Harvard University Press.

  • Braitenberg, C., & Rabinovich, A. B. (2017). The Chile-2015 (Illapel) earthquake and tsunami (p. 335). Basel: Birkhäuser/Springer. https://doi.org/10.1007/978-3-319-57822-4.

  • Clague, J. J., Bobrowsky, P. T., & Hutchinson, I. (2000). A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Reviews, 19, 849–863.

    Article  Google Scholar 

  • Cummins, P. R., Kong, L. S. L., & Satake, K. (2008). Tsunami science four years after the 2004 Indian Ocean tsunami. Part I: Modelling and hazard assessment. Pure and Applied Geophysics, 165(11–12, topical issue).

  • Cummins, P. R., Kong, L. S. L., & Satake, K. (2009). Tsunami science four years after the 2004 Indian Ocean tsunami. Part II: Observation and data analysis. Pure and Applied Geophysics, 166(1–2, topical issue).

  • Dogan, G. G., Annunziato, A., Papadopoulos, G. A., et al. (2019). The 20th July 2017 Bodrum-Kos tsunami field survey. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02151-1. (this issue).

    Google Scholar 

  • Filloux, J. H. (1982). Tsunami recorded on the open ocean floor. Geophysical Research Letters, 9(1), 25–28. https://doi.org/10.1029/gl009i001p00025.

    Article  Google Scholar 

  • Flow Science. (2002). FLOW-3D User’s Manual.

  • Fujii, Y., & Satake, K. (2007). Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data. Bulletin of the Seismological Society of America, 97(1A), S192–S207. https://doi.org/10.1785/0120050613.

    Article  Google Scholar 

  • Geist, E. L., Fritz, H. M., Rabinovich, A. B., & Tanioka, Y. (2016). Global tsunami science: Past and future. Volume I. Pure and Applied Geophysics, 173(12, topical issue).

  • GEOWARE. (2007). TTT—A tsunami travel-time calculator. http://www.geoware-online.com.

  • Glimsdal, S., Løvholt, F., Harbitz, C. B., et al. (2019). A new approximate method for quantifying tsunami maximum inundation height probability. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02091-w. (this issue).

    Google Scholar 

  • Goldfinger, C., Nelson, C. H., & Morey, A. E., et al. (2012). Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. In R. Kayen (Ed.) (p. 170). US Geological Survey professional paper 1661-F. https://doi.org/10.3133/pp1661f.

  • González, F. I., Geist, E. L., Jaffe, B., et al. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research, 114, C11023. https://doi.org/10.1029/2008jc005132.

    Article  Google Scholar 

  • Goto, K., Chagué-Goff, C., Goff, J., & Jaffe, B. (2012). The future of tsunami research following the 2011 Tohoku-oki event. Sedimentary Geology, 282, 1–13. https://doi.org/10.1016/j.sedgeo.2012.08.003.

    Article  Google Scholar 

  • Greenslade, D. J. M., Greenwood, R. I., & Allen, S. C. R. (2019). An evaluation of modelled tsunami arrival times. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2004-9. (this issue).

    Google Scholar 

  • Gusiakov, V. K., Dunbar, P. K., & Arcos, N. (2019). Twenty-five years (1992–2016) of global tsunamis: Statistical and analytical overview. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02113-7. (this issue).

    Google Scholar 

  • Imamura, F. (1996). Review of tsunami simulation with a finite difference method. In H. Yeh, P. Liu, & C. Synolakis (Eds.), Long wave runup models (pp. 25–42). Hackensack, N.J: World Scientific Publishing.

    Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (2013). Tohoku earthquake: A surprise? Bulletin of the Seismological Society of America, 103(2B), 1181–1194. https://doi.org/10.1785/0120120110.

    Article  Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359. https://doi.org/10.1016/0031-9201(72)90058-1.

    Article  Google Scholar 

  • Kânoğlu, U., & Synolakis, C. E. (1998). Long wave runup on piecewise linear topographies. Journal of Fluid Mechanics, 374, 1–28. https://doi.org/10.1017/s0022112098002468.

    Article  Google Scholar 

  • Kânoğlu, U., Titov, V., Bernard, E., & Synolakis, C. (2015). Tsunamis: Bridging science engineering and society. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053), 20140369. https://doi.org/10.1098/rsta.2014.0369.

    Article  Google Scholar 

  • Kong, L. (2011). Post-tsunami field surveys are essential for mitigating the next tsunami disaster. Oceanography, 24(2), 222–226. https://doi.org/10.5670/oceanog.2011.48.

    Article  Google Scholar 

  • Lynett, P. J., Gately, K., Wilson, R., et al. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modelling, 114, 14–32. https://doi.org/10.1016/j.ocemod.2017.04.003.

    Article  Google Scholar 

  • Martin, S. S., Li, L., Okal, E. A., et al. (2019). Reassessment of the 1907 Sumatra tsunami earthquake based on macroseismic seismological, and tsunami observations, and modeling. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02134-2. (this issue).

    Google Scholar 

  • McAdoo, B. G., Dengler, L., Prasetya, G., & Titov, V. V. (2006). Smong: How an oral history saved thousands on Indonesia’s Simeulue Island during the December 2004 and March 2005 tsunamis. Earthquake Spectra, 22(S3), 661–669. https://doi.org/10.1193/1.2204966.

    Article  Google Scholar 

  • Mofjeld, H. O. (2009). Tsunami measurements. In A. Robinson & E. Bernard (Eds.), The Sea, ideas and observations on progress in the study of the seas, Vol. 15, Chap. 7. Tsunamis, (pp. 201–235), Cambridge: Harvard University Press.

    Google Scholar 

  • Nicolsky, D. J., Suleimani, E. N., Koehler, R. D., & Salisbury, J. B. (2019). Developing an approximate tsunami hazard zone for areas with poor topographic coverage in Alaska. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02180-w. (this issue).

    Google Scholar 

  • Okal, E. A. (2015). The quest for wisdom: Lessons from 17 tsunamis 2004–2014. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053), 20140370. https://doi.org/10.1098/rsta.2014.0370.

    Article  Google Scholar 

  • Okal, E. A. (2019a). Twenty-five years of progress in the science of “geological” tsunamis following the 1992 Nicaragua and Flores events. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02244-x. (this issue).

    Google Scholar 

  • Okal, E. A. (2019b). The large Andaman Islands earthquake of 26 June 1941: Why no significant tsunami? Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2082-8. (this issue).

    Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158(3), 899–912. https://doi.org/10.1111/j.1365-246x.2004.02347.x.

    Article  Google Scholar 

  • Paris, A., Okal, E. A., Guérin, C., Heinrich, P., Schindelé, F., & Hébert, H. (2019). Numerical modeling of the June 17, 2017 landslide and tsunami events in Karrat Fjord, West Greenland. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02123-5. (this issue).

    Google Scholar 

  • Periáñez, R., & Cortés, C. (2019). A modelling study on tsunami propagation in the Caspian Sea. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2057-9. (this issue).

    Google Scholar 

  • Pranantyo, I. R., & Cummins, P. R. (2019). Multi-data-type source estimation for the 1992 Flores earthquake and tsunami. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2078-4. (this issue).

    Google Scholar 

  • Pugh, D., & Woodworth, P. (2014). Sea-level science: Understanding tides, surges, tsunamis and mean sea-level changes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rabinovich, A. B., Borrero, J. C., & Fritz, H. M. (2014). Tsunamis in the Pacific Ocean: 2010–2011. Pure and Applied Geophysics, 171(12, topical issue).

  • Rabinovich, A. B., & Eblé, M. C. (2015). Deep ocean measurements of tsunami waves. Pure and Applied Geophysics, 172(12), 3281–3312. https://doi.org/10.1007/s00024-015-1058-1.

    Article  Google Scholar 

  • Rabinovich, A. B., Fritz, H. M., Tanioka, Y., & Geist, E. L. (2017b). Global tsunami science: Past and future, Volume II, Pure and Applied Geophysics, 174(8, topical issue).

  • Rabinovich, A. B., Fritz, H. M., Tanioka, Y., & Geist, E. L. (2018). Global tsunami science: Past and future, Volume III, Pure and Applied Geophysics, 175(4, topical issue).

  • Rabinovich, A. B., Geist, E. L., Fritz, H. M., & Borrero, J. C. (2015a). Tsunami science: Ten years after the 2004 Indian Ocean tsunami. Volume I. Pure and Applied Geophysics, 172(3–4, topical issue).

  • Rabinovich, A. B., Geist, E. L., Fritz, H. M., & Borrero, J. C. (2015b). Tsunami science: Ten years after the 2004 Indian Ocean tsunami. Volume II. Pure and Applied Geophysics, 172(12, topical issue).

  • Rabinovich, A. B., & Stephenson, F. E. (2004). Longwave measurements for the coast of British Columbia and improvements to the tsunami warning capability. Natural Hazards, 32(3), 313–343.

    Article  Google Scholar 

  • Rabinovich, A., Stroker, K., Thomson, R., & Davis, E. (2011). DARTs and CORK in Cascadia Basin: High-resolution observations of the 2004 Sumatra tsunami in the northeast Pacific. Geophysical Research Letters, 38(8), L08607. https://doi.org/10.1029/2011gl047026.

    Article  Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., Krassovski, M. V., Stephenson, F. E., & Sinnott, D. C. (2019). Five great tsunamis of the 20th century as recorded on the coast of British Columbia. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02133-3. (this issue).

    Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., & Stephenson, F. E. (2006). The Sumatra Tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic Oceans. Surveys In Geophysics, 27, 647–677.

    Article  Google Scholar 

  • Rabinovich, A. B., Titov, V. V., Moore, C. W., & Eblé, M. C. (2017a). The 2004 sumatra tsunami in the Southeastern Pacific Ocean: New global insight from observations and modeling. Journal of Geophysical Research: Oceans, 122, 7992–8019. https://doi.org/10.1002/2017JC013078.

    Google Scholar 

  • Ramírez-Herrera, M. T., Corona, N., & Castillo-Aja, R. (2019). Revealing the source of the 27 August 1810 Loreto, Baja California, tsunami from historical evidence and numerical modelling. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02161-z. (this issue).

    Google Scholar 

  • Salmanidou, D. M., Heidarzadeh, M., & Guillas, S. (2019). Probabilistic landslide-generated tsunamis in the Indus Canyon NW Indian Ocean, using statistical emulation. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02187-3. (this issue).

    Google Scholar 

  • Satake, K., Bourgeois, J., Abe, Ku, Abe, Ka, Tsuji, Y., Imamura, F., et al. (1993). Tsunami field survey of the 1992 Nicaragua earthquake. EOS Transactions American Geophysical Union, 74(13), 145–157. https://doi.org/10.1029/93eo00271.

    Article  Google Scholar 

  • Satake, K., & Imamura, F. (1995). Tsunamis: 1992–1994. Pure and Applied Geophysics, 144(3–4, topical issue).

    Google Scholar 

  • Satake, K., Okal, E. A., & Borrero, J. C. (2007). Tsunami and its hazard in the Indian and Pacific oceans. Pure and Applied Geophysics, 164(2–3, topical issue).

  • Satake, K., Rabinovich, A. B., Dominey-Howes, D., & Borrero, J. C. (2013a). Historical and recent catastrophic tsunamis in the world: Past, present, and future. Volume I: The 2011 Tohoku tsunami. Pure and Applied Geophysics, 170(6–8, topical issue).

  • Satake, K., Rabinovich, A. B., Dominey-Howes, D., & Borrero, J. C. (2013b). Historical and recent catastrophic tsunamis in the world: Past, present, and future. Volume II: Tsunamis from 1755 to 2010. Pure and Applied Geophysics, 170(9–10, topical issue).

  • Satake, K., Rabinovich, A. B., Kânoğlu, U., & Tinti, S. (2011a). Tsunamis in the world ocean: past, present, and future. Volume I. Pure and Applied Geophysics, 168(6–7, topical issue).

  • Satake, K., Rabinovich, A. B., Kânoğlu, U., & Tinti, S. (2011b). Tsunamis in the World Ocean: Past, present, and future. Volume II. Pure and Applied Geophysics, 168(11, topical issue).

  • Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379, 246–249.

    Article  Google Scholar 

  • Schambach, L., Grilli, S. T., Kirby, J. T., & Shi, F. (2019). Landslide tsunami hazard along the upper US East Coast: Effects of slide deformation bottom friction, and frequency dispersion. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1978-7. (this issue).

    Google Scholar 

  • Sogut, D. V., & Yalcıner, A. C. (2019). Performance comparison of NAMI DANCE and FLOW-3D models in tsunami propagation inundation and currents using NTHMP benchmark problems. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1907-9. (this issue).

    Google Scholar 

  • Stein, S., & Okal, E. A. (2007). Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bulletin of the Seismological Society of America, 97(1A), S279–S295. https://doi.org/10.1785/0120050617.

    Article  Google Scholar 

  • Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., & González, F. I. (2008). Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165(11–12), 2197–2228. https://doi.org/10.1007/s00024-004-0427-y.

    Article  Google Scholar 

  • Synolakis, C., & Kânoğlu, U. (2015). The Fukushima accident was preventable. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 373(2053), 20140379. https://doi.org/10.1098/rsta.2014.0379.

    Article  Google Scholar 

  • Synolakis, C. E., & Kong, L. (2006). Runup measurements of the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22(S3), 67–91. https://doi.org/10.1193/1.2218371.

    Article  Google Scholar 

  • Synolakis, C. E., & Okal, E. A. (2005). 1992–2002: Perspective on a decade of post-tsunami surveys. In  K. Satake (Ed.), Tsunamis: Case studies and recent developments (pp. 1–29), Dordrecht: Springer-Verlag. https://doi.org/10.1007/1-4020-3331-1_1.

    Google Scholar 

  • Tappin, D. R. (2007). Sedimentary features of tsunami deposits—Their origin recognition and discrimination: An introduction. Sedimentary Geology, 200(3–4), 151–154. https://doi.org/10.1016/j.sedgeo.2007.01.001.

    Article  Google Scholar 

  • Thomson, R. E., Fine, I. V., Rabinovich, A. B., et al. (2011). Observations of the 2009 Samoa tsunami by the NEPTUNE-Canada cabled observatory: Test data for an operational regional tsunami forecast model. Geophysical Research Letters, 38, L11701. https://doi.org/10.1029/2011GL046728.

    Article  Google Scholar 

  • Titov, V. V. (2009). Tsunami forecasting. In  A. Robinson & E. Bernard (Eds.), The Sea, ideas and observations on progress in the study of the seas Vol. 15. Chap. 12 Tsunamis, (pp. 371–400). Cambridge: Harvard University Press.

  • Titov, V. V., & González, F. I. (1997). Implementation and testing of the method of splitting tsunami (MOST) model, NOAA Tech. Memo., ERL PMEL-112 (p. 11).

  • Titov, V. V., González, F. I., Bernard, E. N., et al. (2005a). Real-time tsunami forecasting: Challenges and solutions. Natural Hazards, 35(1), 35–41. https://doi.org/10.1007/1-4020-3607-8_3.

    Article  Google Scholar 

  • Titov, V., Kânoğlu, U., & Synolakis, C. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway Port, Coastal, and Ocean Engineering, 142(6), 03116004. https://doi.org/10.1061/(asce)ww.1943-5460.0000357.

    Article  Google Scholar 

  • Titov, V. V., Rabinovich, A. B., Mofjeld, H., Thomson, R. E., & González, F. I. (2005b). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309, 2045–2048.

    Article  Google Scholar 

  • Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway Port, Coastal, and Ocean Engineering, 124(4), 157–171. https://doi.org/10.1061/(asce)0733-950x(1998)124:4(157).

    Article  Google Scholar 

  • Torres, C. E., Calisto, I., & Figueroa, D. (2019). Magnetic signals at Easter Island during the 2010 and 2015 Chilean tsunamis compared with numerical models. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2047-y. (this issue).

    Google Scholar 

  • Triantafyllou, I., Novikova, T., Charalampakis, M., Fokaefs, A., & Papadopoulos, G. A. (2019). Quantitative tsunami risk assessment in terms of building replacement cost based on tsunami modelling and GIS methods: The case of Crete Isl. Hellenic Arc. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1984-9. (this issue).

    Google Scholar 

  • UNESCO-IOC. (2014). The UNESCO Intergovernmental Oceanographic Commission International Tsunami Survey Team (ITST) Post-Tsunami Field Survey Guide, 2nd Edition. https://unesdoc.unesco.org/ark:/48223/pf0000229456.

  • Voronina, T. A., Voronin, V. V., & Cheverda, V. A. (2019). The 2015 Illapel tsunami source recovery by inversion of DART tsunami waveforms using the R-solution method. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02100-y. (this issue).

    Google Scholar 

  • Watada, S., Kusumoto, S., & Satake, K. (2014). Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 119(5), 4287–4310. https://doi.org/10.1002/2013jb010841.

    Google Scholar 

  • Wei, Y., Bernard, E. N., Tang, L., et al. (2008). Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. Geophysical Research Letters, 35, L04609. https://doi.org/10.1029/2007gl032250.

    Google Scholar 

  • Williamson, A. L., & Newman, A. V. (2019). Suitability of open-ocean instrumentation for use in near-field tsunami early warning along seismically active subduction zones. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1898-6. (this issue).

    Google Scholar 

  • Yeh, H., Liu, P. L.-F., Briggs, M., & Synolakis, C. (1994). Propagation and amplification of tsunamis at coastal boundaries. Nature, 372, 353–355. https://doi.org/10.1038/372353a0.

    Article  Google Scholar 

  • Yolsal-Çevikbilen, S., Ulutaş, E., & Taymaz, T. (2019). Source models of the 2012 Haida Gwaii (Canada) and 2015 Illapel (Chile) earthquakes and numerical simulations of related tsunamis. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1996-5. (this issue).

    Google Scholar 

Download references

Acknowledgements

We thank Ms. Shamima Banu Rajesh and Mr. Sathish Srinivasan at the Journals Editorial Office of Springer for their timely editorial. We thank Francisco Azpilicueta, and the editors of the previous issue, Hermann M. Fritz and Eric Geist, for editing those papers which were transferred to this issue. We acknowledge Professor Kenji Satake (University of Tokyo, Japan) and Dr. Vasily Titov (PMEL/NOAA, Seattle, WA, USA) for their support. We thank the authors who contributed papers to these topical volumes. Finally, we would like to especially thank the reviewers who shared their time, effort, and expertise to maintain the scientific rigour of this volume. AR’s contribution was partially supported by the Russian State Assignment of IORAS 0149-2019-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kânoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kânoğlu, U., Tanioka, Y., Okal, E.A. et al. Introduction to “Twenty Five Years of Modern Tsunami Science Following the 1992 Nicaragua and Flores Island Tsunamis, Volume I”. Pure Appl. Geophys. 176, 2757–2769 (2019). https://doi.org/10.1007/s00024-019-02266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02266-5

Keywords

Navigation