Skip to main content
Log in

Characteristics of Focal Mechanisms and the Stress Field in the Southeastern Margin of the Tibetan Plateau

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Crustal earthquake focal mechanisms are investigated in the southeastern margin of the Tibetan Plateau, where the Tibetan Plateau and stable South China Block merge. An updated database of focal mechanisms has been compiled by selecting 132 Global Centroid Moment Tensor solutions and by adding the 173 new solutions (3.5 ≤ Ms ≤ 7.4) estimated by waveform inversion in this study. A total of 305 mechanisms are included in this database. These solutions show regionally specific distributions with dominant strike-slip faulting and some normal and reverse faulting. Focal mechanism solutions have also been inverted for the stress tensor orientation to obtain the principal stress axes over the study region. Results show that the horizontal maximum principal σ 1 axes rotate clockwise with a wider range than the geodetically measured surface motion in the east, which is not limited to the Xianshuihe–Xiaojiang fault, but has some overlap with the Zhaotong–Lianfeng fault. Localized normal faulting stress regimes are observed in the Jinshajiang–Litang fault areas and the Baoshan sub-block. The minimum principal axes are oriented with a gradually changing trend from north–south to northwest–southeast, from north to south, indicating diverse compression stress patterns. Significant changes in the crustal stress field after the Wenchuan earthquake are preliminarily observed in the Baoshan sub-block where orientations of two principal axes have changed, and in the Jinggu–Ximeng sub-block areas where the strike-slip faulting stress pattern has transformed to normal faulting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, C. R., Luo, Z., Qian, H., Wen, X., Zhou, H., & Huang, W. (1991). Field study of a highly active fault zone: The Xianshuihe fault of southwesternChina. Geological Society of America Bulletin, 103, 1178–1199.

    Article  Google Scholar 

  • Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research, 89(B7), 5835–5848.

    Article  Google Scholar 

  • Angelier, J. (2002). Inversion of earthquake focal mechanisms to obtain theseismotectonic stress IV—a newmethod free of choice among nodal lines. Geophysical Journal International, 150, 588–609.

    Article  Google Scholar 

  • Arnold, R., & Townend, J. (2007). A Bayesian approach to estimating tectonic stress from seismological data. Geophysical Journal International, 170, 1336–1356.

    Article  Google Scholar 

  • Bai, D., Unsworth, M. J., Meju, M. A., Ma, X., Teng, J., Kong, X., et al. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5), 358–362.

    Article  Google Scholar 

  • Bassin, C., Laske, G., & Masters, T. G. (2000). The current limits of resolution for surface wave tomography in North America. EOS Transactions, AGU, 81, F897.

    Google Scholar 

  • Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3), 1207. doi:10.1029/2001GC000252.

    Article  Google Scholar 

  • Burchfiel, B. C., Chen, Zh, Liu, Y., & Royden, L. (1995). Tectonics of the Longmen Shan and adjacent regions, Central China. International Geology Review, 37, 661–735.

    Article  Google Scholar 

  • Burchfiel, B. C., Royden, L. H., van der Hilst, R. D., Hager, B. H., Chen, Z., King, R. W., et al. (2008). A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today, 18, 4–11.

    Article  Google Scholar 

  • Cheng, E. L. (1981). Modern tectonic stress field and tectonic features in Sichuan and its adjacent areas. Acta Seismologica Sinica, 3(3), 231–241. (in Chinese).

    Google Scholar 

  • Cheng, W., Diao, G., Lü, Y., Zhang, J., Li, G., & Chen, T. (2003). Focal mechanism, faults slip rates, and activities of blocks in Sichuan–Yunnan areas. Seismology and Geology, 25(1), 71–87. (in Chinese with English abstract).

    Google Scholar 

  • Cheng, J., Xu, X. W., Gan, W. J., Ma, W. T., Chen, W. T., & Zhang, Y. (2012). Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chinese Journal of Geophysics, 55(4), 1198–1212. doi:10.6038/j.issn.0001-5733.2012.04.016. (in Chinese with English abstract).

    Google Scholar 

  • Cui, X., Xie, F., & Zhang, H. (2006). Recent tectonic stress field zoning in Sichuan–Yunnan region and its dynamic interest. Acta Seismologica Sinica, 28(5), 451–461. (in Chinese).

    Google Scholar 

  • Dreger, D. S., & Helmberger, D. V. (1993). Determination of source parameters at regional distances with three-component sparse network data. Journal of Geophysical Research, 98(B5), 8107–8125. doi:10.1029/93JB00023.

    Article  Google Scholar 

  • Fan, G., Beck, S. L., & Wallace, T. C. (1993). The seismic source parameters of the 1991 Costa Rica aftershock sequence: Evidence for a trans-current plate boundary. Journal of Geophysical Research, 98(B9), 15759–15778.

    Article  Google Scholar 

  • Fan, G., & Wallace, T. (1991). The determination of source parameters for small earthquakes from a single, very broadband seismic station. Geophysical Research Letters, 18(8), 1385–1388. doi:10.1029/91GL01804.

    Article  Google Scholar 

  • Fitch, T. J. (1972). Plate convergence, transcurrent faults and internal deformation adjacent to southeast Asia and western Pacific. Journal of Geophysical Research, 77, 4432–4460. doi:10.1029/JB077i023p04432.

    Article  Google Scholar 

  • Gahalaut, V. K., & Gahalaut, K. (2007). Burma plate motion. Journal of Geophysical Research Atmospheres, 112(B10), 1–8.

    Article  Google Scholar 

  • Gan, W., Zhang, P., Shen, Z., Niu, Z., Wang, M., Wan, Y., et al. (2007). Present-day crustal motion within the Tibetan Plateau inferred from GPS Measurements. Journal of Geophysical Research, 112(B8), B08416. doi:10.1029/2005JB004120.

    Article  Google Scholar 

  • Gephart, J. W. (1990). Stress and the direction of slip on fault planes. Tectonics, 9(4), 845–858. doi:10.1029/TC009i004p00845.

    Article  Google Scholar 

  • Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research, 89(B11), 9305–9320. doi:10.1029/JB089iB11p09305.

    Article  Google Scholar 

  • Guo, S. M., Xiang, H. F., Zhou, R. Q., Xu, X. W., Dong, X. Q., & Zhang, W. X. (2000). Longling-lancang fault zone in southwest yunnan, China—a newly-generated rupture zone in continental crust. Chinese Science Bulletin, 4, 376–379.

    Article  Google Scholar 

  • Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research,. doi:10.1029/2005JB004144.

    Google Scholar 

  • Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B. (2008). The World Stress Map database release. doi:10.1594/GFZ.WSM.Rel2008.

  • Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. and Müller,B.(2009), The World Stress Map based on the database release 2008, equatorial scale 1:46,000,000, Commission for the Geological Map of the World, Paris. doi:10.1594/GFZ.WSM.Map2009.

  • Holt, W. E., Chamot-Rooke, N., Le Pichon, X., Haines, A. J., Shen-Tu, B., & Ren, J. (2000). Velocity field in Asia inferred from Quaternary fault slip rates and global positioning system observations. Journal of Geophysical Research, 105, 19185–19209.

    Article  Google Scholar 

  • Hou, Z., Wang, L., Zaw, K., Mo, X. X., Wang, M. J., Li, D. M., et al. (2003). Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China. Ore Geology Reviews, 22(3–4), 177–199.

    Google Scholar 

  • Hu, H., Lu, H., Wang, C., He, Z., Zhu, L., & Yan, Q. (1986). Blasting seismic studies of western Yunnan crustal structure. Chinese Journal of Geophysics., 29(2), 133–144. (in Chinese with English abstract).

    Google Scholar 

  • Kan, R., & Han, Y. (1992). Zhefang-Malong Geotransect in Yunnan Province Geotransect Editorial of China Earthquake Administration (p. 364). Beijing: Seismological Press. (in Chinese).

    Google Scholar 

  • Kan, R. J., Zhang, S. C., Yan, F. T., & Yu, L Sh. (1977). Tectonic stress field in southwest China and the characteristics of modern tectonic activity. Chinese Journal of Geophysics, 20(2), 96–109. (in Chinese with English abstract).

    Google Scholar 

  • Lin, Z. H., & Zhang, W. (1993). Research of crust and upper mantle velocity structure in western Yunnan. Acta Seismologica Sinica, 15(4), 427–440. (in Chinese).

    Google Scholar 

  • Lund, B., & Slunga, R. (1999). Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Ölfus in southwest Iceland. Journal of Geophysical Research, 104, 14947–14964.

    Article  Google Scholar 

  • Luo, J., Zhao, C. P., & Zhou, L. Q. (2015). Focal mechanisms and stress field of the Shangri-La Deqin, Yunnan Province—Derong, Sichuan Province Ms5.9 earthquake sequence in August, 2013. Chinese Journal of Geophysics, 58(2), 424–435. doi:10.6038/cjg20150207.

    Google Scholar 

  • Maury, J., Cornet, F. H., & Dorbath, L. (2013). A review of methods for determining stress fields from earthquakes focal mechanisms; Application to the Sierentz 1980 seismic crisis (Upper Rhine graben). Bulletin de la Societe Geologique de France, 184(4–5), 319–334.

    Article  Google Scholar 

  • McKenzie, D. P. (1969). Speculations on the consequences and causes of plate Motions. Geophysical Journal International, 18(1), 1–32. doi:10.1111/j.1365-246X.1969.tb00259.x.

    Article  Google Scholar 

  • Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research, 89(B13), 11517–11526. doi:10.1029/JB089iB13p11517.

    Article  Google Scholar 

  • Michael, A. J. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research, 92(B1), 357–368. doi:10.1029/JB092iB01p00357.

    Article  Google Scholar 

  • Mitchell, A. H. G. (1993). Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region. Journal of the Geological Society, 150(6), 1089–1102. doi:10.1144/gsjgs.150.6.1089.

    Article  Google Scholar 

  • Parsons, T., Ji, C., & Kirby, E. (2008). Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203), 509–510.

    Article  Google Scholar 

  • Pasyanos, M. E., Dreger, D. S., & Romanowicz, B. (1996). Toward real-time estimation of regional moment tensors. Bulletin of the Seismological Society of America, 86(5), 1255–1269.

    Google Scholar 

  • Patton, H. (1980). Reference point equalization method for determining the source and path effects of surface waves. Journal of Geophysical Research, 85(B2), 821–848. doi:10.1029/JB085iB02p00821.

    Article  Google Scholar 

  • Patton, H., & Zandt, G. (1991). Seismic moment tensors of western US earthquakes and implications for the tectonic stress field. Journal of Geophysical Research, 96(B11), 18245–18259.

    Article  Google Scholar 

  • Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., et al. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790. doi:10.1126/science.276.5313.788.

    Article  Google Scholar 

  • Shangguan, Z., Zhao, C., Li, H., Gao, Q., & Sun, M. (2005). Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China. Geothermics, 34, 518–526. doi:10.1016/j.geothermics.2005.05.002.

    Article  Google Scholar 

  • Shen, Z., Lu, J., Wang, M., & Burgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal Geophysical Researches,. doi:10.1029/2004JB003421.

    Google Scholar 

  • Shen, F., Royden, L. H., & Burchfiel, B. C. (2001). Large-scale crustal deformation of the Tibetan Plateau. Journal of Geophysical Research, 106, 6793–6816. doi:10.1029/2000JB900389.

    Article  Google Scholar 

  • Socquet, A., & Pubellier, M. (2005). Cenozoic deformation in western Yunnan (China–Myanmar border). Journal of Asian Earth Sciences, 24(4), 495–515. doi:10.1016/j.jseaes.2004.03.006.

    Article  Google Scholar 

  • Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., et al. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1671–1677. doi:10.1126/science.105978.

    Article  Google Scholar 

  • Thio, H. K., & Kanamori, H. (1995). Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope. Bulletin of the Seismological Society of America, 85(4), 1021–1038.

    Google Scholar 

  • Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. doi:10.1093/gji/ggu224.

    Article  Google Scholar 

  • Wallace, T. C., & Helmberger, D. V. (1982). Determining source parameters of moderate-size earthquakes from regional waveforms. Physics of the Earth and Planetary Interiors, 30(2), 185–196. doi:10.1016/0031-9201(82)90106-6.

    Article  Google Scholar 

  • Wan, Y. G., & Shen, Z. K. (2010). Static coulomb stress change on faults caused by the 2008 Mw 7.9 Wenchuan, China earthquake. Tectonophysics, 491, 105–118. doi:10.1016/j.tecto.2010.03.017.

    Article  Google Scholar 

  • Wang, E., & Burchfiel, B. C. (1997). Interpretation of Cenozoic tectonicsin the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. International Geologiy Review, 39, 191–219.

    Article  Google Scholar 

  • Wang, Q. C., Chen, Z. L., & Zheng, S. H. (2009). Spatial segmentation characteristic of focal mechanism of aftershock sequence of Wenchuan Earthquake. Chinese Science Bulletin, 54, 2263–2270. doi:10.1007/s11434-009-0367-0.

    Article  Google Scholar 

  • Wang, C., Han, W., Wu, J., Lou, H., & Chan, W. (2007a). Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research,. doi:10.1029/2005JB003873.

    Google Scholar 

  • Wang, C., Mooney, W. D., Wang, X., Wu, J., Lou, H., & Wang, F. (2002). Three-dimensional crust and upper mantle velocity structure of Sichuan–Yunnan region. Acta Seismologica Sinica, 24(1), 1–16. (in Chinese with English abstract).

    Article  Google Scholar 

  • Wang, Y., Wang, E., Shen, Z., Wang, M., Gan, W., Qiao, X., et al. (2008). GPS-constrained inversion of present-day slip rates along major faults of the Sichuan–Yunnan region, China. Science in China: Series D Earth Science, 51, 1267–1283. (in Chinese).

    Article  Google Scholar 

  • Wang, C., & Yan, Q. (1994). The three-dimensional seismic velocity structure beneath Kunming earthquake network. Acta Seismologica Sinica, 16(2), 167–175. (in Chinese with English abstract).

    Article  Google Scholar 

  • Wang, Q., Zhang, P., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X., et al. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542), 574–577. doi:10.1126/science.1063647.

    Article  Google Scholar 

  • Wang, Y., Zhang, X., Jiang, C., Wei, H., & Wan, J. (2007b). Tectonic controls on the late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan plateau. Journal of Asian Earth Sciences, 30(2), 375–389. doi:10.1016/j.jseaes.2006.11.005.

    Article  Google Scholar 

  • Wei, S., Zhan, Z., Tan, Y., Ni, S., & Helmberger, D. (2012). Locating earthquakes with surface waves and centroid moment tensor estimation. Journal of Geophysical Research,. doi:10.1029/2011JB008501.

    Google Scholar 

  • Wessel, P., & Smith, W. H. (1998). New improved version of Generic Mapping Tools released. Eos Transactions American Geophysical Union, 79(47), 579. doi:10.1029/98EO00426.

    Article  Google Scholar 

  • Wu, J., Ming, Y., & Wang, C. (2001). Research of S-wave velocity structure beneath digital seismic stations in Yunnan Province. Chinese Journal of Geophysics, 44(2), 228–237. (in Chinese with English abstract).

    Article  Google Scholar 

  • Wu, J., Ming, Y., & Wang, C. (2006). Velocity structure inversion based on in Regional seismic waveform Sichuan–Yunnan regions. Chinese Journal of Geophysics, 49(5), 1369–1376. (in Chinese with English abstract).

    Google Scholar 

  • Xiang, H., Xu, X., Guo, S., Zhang, W., Li, H., & Yu, G. (2002). Sinistral reverseing along the Lijiang–Xiaojinhe fault since Quaternary and its geologic-tectonic Significance-shielding effect of transverse structure of intra-continental active block. Seismology and Geology, 24, 188–198. (in Chinese with English abstract).

    Google Scholar 

  • Xie, F., Cui, X., Zhao, J., Chen, Q., & Li, H. (2004). Segmetations of tectonic stress field Chinese continent and its adjacent in the partition. Chinese Journal of Geophysics, 47(4), 654–662. (in Chinese with English abstract).

    Article  Google Scholar 

  • Xie, F., & Zhu, J. (1993). Modern tectonic stress field in southwest China’s basic features. Acta Seismologica Sinica, 15(4), 407–417. (in Chinese).

    Google Scholar 

  • Xu, J. R., & Oike, K. (1995). Earthquake mechanisms and its implication for tectonic stress field in the southern part of the North-South seismic belt in China. Acta Seismological Sinica, 17(1), 31–40. (in Chinese).

    Google Scholar 

  • Xu, Y., Herrmann, R. B., & Koper, K. D. (2010). Source parameters of regional small-to-moderate earthquakes in the Yunnan–Sichuan region of China. Bulletin of the Seismological Society of America, 100(5B), 2518–2531. doi:10.1785/0120090195.

    Article  Google Scholar 

  • Yong, L., Allen, P. A., Densmore, A. L., & Qing, X. (2003). Evolution of the Longmen Shan foreland basin (western Sichuan Basin) during the Late Triassic Indosinian Orogen. Basin Research, 15(1), 117–138. doi:10.1046/j.1365-2117.2003.00197.x.

    Article  Google Scholar 

  • Zhang, P. Z. (2013). A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584, 7–22. doi:10.1016/j.tecto.2012.02.021.

    Article  Google Scholar 

  • Zhang, Y., Anne, R., Wang, G., Hervé, L. P., Cécile, G., Matthias, B., et al. (2015). Timing and rate of exhumation along the litang fault system, implication for fault reorganization in southeast tibet. Tectonics,. doi:10.1002/2014TC003671.

    Google Scholar 

  • Zhang, Y., Feng, W. P., Xu, L. S., Zhou, C. H., & Chen, Y. T. (2009). Spatio-temporal rupture process of the 2008 great Wenchuan earthquake. Science in China, 52(02), 145–154.

    Article  Google Scholar 

  • Zhang, G., Wang, S., Li, L. I., Zhang, X., & Ma, H. S. (2002). Focal depth research of earthquakes in mainland china: Implication for tectonics. Chinese Science Bulletin, 47(12), 969–974.

    Article  Google Scholar 

  • Zhao, G., Chen, X., Wang, L., Wang, J., Tang, J., Wan, Z., et al. (2008). Electromagnetic evidences of the probe crust “pipe flow” layer on the eastern edge of Tibet Pleatea. Science Bulletin, 53(3), 345–350. (in Chinese).

    Google Scholar 

  • Zhao, C. P., Chen, Z. L., Zhou, L. Q., Li, Z. X., & Kang, Y. (2009). Rupture process of the 8.0 Wenchuan earthquake of Sichuan, China: The segmentation feature. Chinese Science Bulletin, 54, 3475–3482. doi:10.1007/s11434-009-0425-7.

    Google Scholar 

  • Zhao, L., & Helmberger, D. V. (1994). Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1), 91–104.

    Google Scholar 

  • Zhao, L., Luo, Y., Liu, T., & Luo, Y. J. (2013). Earthquake Focal Mechanisms in Yunnan and their Inference on the Regional Stress Field. Bulletin of the Seismological Society of America, 103(4), 2498–2507. doi:10.1785/0120120309.

    Article  Google Scholar 

  • Zheng, Y., Ma, H. S., Lǚ, J., Ni, S. D., Li, Y. C., & Wei, S. J. (2009). Source mechanism of strong aftershocks (M s ≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China, 52(6), 739–753.

    Article  Google Scholar 

  • Zhu, L., & Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bulletin of Seismological Society of America, 86(5), 1634–1641.

    Google Scholar 

  • Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. doi:10.1046/j.1365-246X.2002.01610.x.

    Article  Google Scholar 

  • Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: The world stress map project. Journal of Geophysics Research, 97, 11703–11728. doi:10.1029/92JB00132.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Longfeng, Luoyan, Zhengyong for providing help on technical details. We thank anonymous reviewers for critical and constructive comments. Broadband waveform data for this study was provided by the Data Management Center of the China National Seismic Network at the Institute of Geophysics, China Earthquake Administration. Some of waveform data were provided by the Yunnan Province digital seismic network. The earthquake catalog can be obtained from the China Earthquake Networks Center (CENC). The CAP program for focal mechanism inversions was provided by LuPei Zhu. The Matlab code for this inversion, called STRESSINVERSE, is provided on the web page (http://www.ig.cas.cz/stress-inverse, last accessed June 27, 2014). Figures were prepared using the Generic Mapping Tool software (Wessel and Smith 1998). This study was funded by the Institute Fund Project of the Institute of Earthquake Science “Seismic study on the strong earthquake risk area of the southern segment of the Longmenshan fault (2014IES010103)” and by the project “Dynamic stress response of typical faults in reservoir areas to reservoir impoundment and water level variation” (2015IES010305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-ping Zhao.

Appendix

Appendix

See Tables 1, 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Zhao, Cp., Lü, J. et al. Characteristics of Focal Mechanisms and the Stress Field in the Southeastern Margin of the Tibetan Plateau. Pure Appl. Geophys. 173, 2687–2710 (2016). https://doi.org/10.1007/s00024-016-1350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1350-8

Keywords

Navigation