Skip to main content
Log in

Validating Velocities in the GeoClaw Tsunami Model Using Observations near Hawaii from the 2011 Tohoku Tsunami

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The ability to measure, predict, and compute tsunami flow velocities is of importance in risk assessment and hazard mitigation. Substantial damage can be done by high velocity flows, particularly in harbors and bays, even when the wave height is small. Moreover, advancing the study of sediment transport and tsunami deposits depends on the accurate interpretation and modeling of tsunami flow velocities and accelerations. Until recently, few direct measurements of tsunami velocities existed to compare with model results. During the 11 March 2011 Tohoku Tsunami, 328 current meters were in place around the Hawaiian Islands, USA, that captured time series of water velocity in 18 locations, in both harbors and deep channels, at a series of depths. We compare several of these velocity records against numerical simulations performed using the GeoClaw numerical tsunami model, based on solving the depth-averaged shallow water equations with adaptive mesh refinement, to confirm that this model can accurately predict velocities at nearshore locations. Model results demonstrate tsunami current velocity is more spatially variable than waveform or height and, therefore, may be a more sensitive variable for model validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Admire A, Dengler L, Crawford G, Uslu B, Montoya J, Wilson R (2011) Observed and modeled tsunami currents on California’s north coast. In: American Geophysical Union, Fall Meeting 2011, pp #NH14A-03.

  • Admire AR (2013) Observed and modeled tsunami currents on California’s north coast. Master’s thesis, Humboldt State University.

  • Admire AR, Dengler LA, Crawford GB, Uslu BU, Borrero JC, Greer SD, Wilson RI (2014) Observed and modeled currents from the tohoku-oki, japan and other recent tsunamis in northern california. Pure and Applied Geophysics. doi:10.1007/s00024-014-0797-8.

  • Amante C, Eakins B (2009) ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, p 19.

  • Apotsos A, Buckley M, Gelfenbaum G, Jaffe B, Vatvani D (2011) Nearshore tsunami inundation model validation: Toward sediment transport applications. Pure and Applied Geophysics 168(11):2097–2119.

  • Arcas D, Wei Y (2011) Evaluation of velocity-related approximations in the non-linear shallow water equations for the Kuril Islands, 2006 tsunami event at Honolulu, Hawaii. Geophys Res Lett 38. doi:10.1029/2011GL047,083.

  • Berger MJ, George DL, LeVeque RJ, Mandli KT (2011) The GeoClaw software for depth-averaged flows with adaptive refinement. Adv Water Res 34:1195–1206, doi:10.1016/j.advwatres.2011.02.016.

  • Borrero J, Ortiz M, Titov V, Synolakis C (1997) Field survey of Mexican tsunami produces new data, unusual photos. EOS 78:85, 87–89.

  • Bourgeois J (2009) Geologic effects and records of tsunamis. In: Bernard EN, Robinson AR (eds) The Sea, Harvard University Press, vol 15, pp 55–92.

  • Bretschneider CL, Krock HJ, Nakazaki E, Casciano FM (1986) Roughness of typical Hawaiian terrain for tsunami run-up calculations: A user’s manual. J.K.K. Look Laboratory Report, University of Hawaii, Honolulu.

  • Bricker JD, Munger S, Pequignet C, Wells JR, Pawlak G, Cheung KF (2007) ADCP observations of edge waves off Oahu in the wake of the November 2006 Kuril Islands tsunami. Geophysical Research Letters 34(23). doi:10.1029/2007GL032015.

  • Cheung KF, Bai Y, Yamazaki Y (2013) Surges around the Hawaiian islands from the 2011 Tohoku tsunami. J Geophys Res 118, pp. 5703–5719, doi:10.1002/jgrc.20413.

  • Co-Ops Survey (Accessed 23 September 2011) Historic Current Survey Data, National Atmospheric and Oceanic Administration. http://tidesandcurrents.noaa.gov/cdata/StationList?type=Current%20Data&filter=survey.

  • Dao MH, Tkalich P (2007) Tsunami propagation modelling – a sensitivity study. Natural Hazards and Earth System Science 7(6), pp. 741–754, doi:10.5194/nhess-7-741-2007, http://www.nat-hazards-earth-syst-sci.net/7/741/2007/.

  • Dengler L, Uslu B (2011) Effects of harbor modification on Crescent City, California’s tsunami vulnerability. Pure and Applied Geophysics 168:1175–1185, doi:10.1007/s00024-010-0224-8.

  • Earthquake Engineering Research Institute (2011) The Tohoku, Japan, Tsunami of March 11, 2011: Effects on Structures. https://www.eeri.org.

  • Flament P, Kennan S, Lumpkin R, Sawyer M, Stroup E (1996) The Ocean Atlas of Hawai’i. http://oos.soest.hawaii.edu/pacioos/outreach/oceanatlas/.

  • Fritz H, Petroff C, Catalán P, Cienfuegos R, Winckler P, Kalligeris N, Weiss R, Barrientos S, Meneses G, Valderas-Bermejo C, Ebeling C, Papadopoulos A, Contreras M, Almar R, Dominguez J, Synolakis C (2011) Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics 168:1989–2010, doi:10.1007/s00024-011-0283-5.

  • Fritz HM, Borrero JC, Synolakis CE, Yoo J (2006) 2004 Indian Ocean tsunami flow velocity measurements from survivor videos. Geophys Res Lett 33. doi:10.1029/2006GL026,784.

  • Fritz HM, Phillips DA, Okayasu A, Shimozono T, Liu H, Mohammed F, Skanavis V, Synolakis CE, Takahashi T (2012) The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys Res Lett 39. doi:10.1029/2011GL050,686.

  • Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:815–820.

  • GeoClaw authors (2012) GeoClaw software, version 4.6.2. http://www.clawpack.org/geoclaw.

  • George DL (2006) Finite volume methods and adaptive refinement for tsunami propagation and inundation. PhD thesis, University of Washington.

  • George DL (2008) Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J Comput Phys 227:3089–3113.

  • George DL, LeVeque RJ (2006) Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Science of Tsunami Hazards 24:319–328.

  • González F, LeVeque RJ, Varkovitzky J, Chamberlain P, Hirai B, George DL (2011) GeoClaw Results for the NTHMP Tsunami Benchmark Problems. http://www.clawpack.org/links/nthmp-benchmarks/geoclaw-results.

  • González FI, Kulikov YA (1993) Tsunami dispersion observed in the deep ocean. In: Tinti S (ed) Tsunamis in the World, Kluwer Academic Publishers, Advances in Natural and Technological Hazards Research, vol 1, pp 7–16.

  • González FI, Geist EL, Jaffe B, Kânoglu U, Mofjeld H, Synolakis CE, Titov VV, Arcas D, Bellomo D, Carlton D, Horning T, Johnson J, Newman J, Parsons T, Peters R, Peterson C, Priest G, Venturato A, Weber J, Wong F, Yalciner A (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research: Oceans 114:C11,023, doi:10.1029/2008JC005132.

  • Huntington K, Bourgeois J, Gelfenbaum G, Lynett P, Jaffe B, Yeh H, Weiss R (2007) Sandy signs of a tsunami’s onshore depth and speed. EOS 88:577–578, http://www.agu.org/journals/eo/eo0752/2007EO52_tabloid.

  • Jaffe BE, Gelfenbaum G (2007) A simple model for calculating tsunami flow speed from tsunami deposits. Sedimentary Geology 3–4:347–361.

  • Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Modeling 62:39–55.

  • Lacy J, Rubin D, Buscombe D (2012) Currents, drag, and sediment transport induced by a tsunami. Journal of Geophysical Research 117, doi:10.1029/2012JC007954.

  • LeVeque RJ (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

  • LeVeque RJ, George DL (2007) High-resolution finite volume methods for the shallow water equations with bathymetry and dry states. In: Liu PLF, Yeh H, Synolakis C (eds) Advanced Numerical Models for Simulating Tsunami Waves and Runup, vol 10, pp 43–73, http://www.amath.washington.edu/rjl/pubs/catalina04/.

  • LeVeque RJ, George DL, Berger MJ (2011) Tsunami modeling with adaptively refined finite volume methods. Acta Numerica pp 211–289, doi:10.1017/S0962492911000043.

  • Liu PLF, Lynett P, Fernando H, Jaffe BE, Fritz H, Higman B, Morton R, Goff J, Synolakis C (2005) Observations by the International Tsunami Survey Team in Sri Lanka. Science 308(5728):1595.

  • Lynett PJ, Borrero JC, Weiss R, Son S, Greer D, Renteria W (2012) Observations and modeling of tsunami-induced currents in ports and harbors. Earth Planet Sci Lett 327–328:68–74, doi:10.1016/j.epsl.2012.02.002.

  • Lynett PJ, Borrero J, Son S, Wilson R, Miller K (2014) Assessment of the tsunami-induced current hazard. Geophysical Research Letters pp n/a-n/a, doi:10.1002/2013GL058680.

  • MacInnes BT, Pinegina TK, Bourgeois J, Razhigaeva NG, Kaistrenko VM, Kravchunovskaya EA (2009) Field survey and geological effects of the 15 November 2006 Kuril tsunami in the middle Kuril Islands. In: Cummins PR, Satake K, Kong LSL (eds) Tsunami Science Four Years after the 2004 Indian Ocean Tsunami, Pageoph Topical Volumes, Birkhäuser Basel, pp 9–36.

  • MacInnes BT, Gusman AR, LeVeque RJ, Tanioka Y (2013) Comparison of earthquake source models for the 2011 Tohoku event using tsunami simulation and near field observations. Bulletin of the Seismological Society of America 103:1256–1274.

  • Moore AL, McAdoo BG, Ruffman A (2007) Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology 200(3–4):336–346.

  • National Geophysical Data Center (Accessed 17 February 2012) National Geophysical Data Center, National Atmospheric and Oceanic Administration. http://www.ngdc.noaa.gov/dem/squareCellGrid/search.

  • Okal EA, Fritz HM, Synolakis CE, Borrero JC, Weiss R, Lynett PJ, Titov VV, Foteinis S, Jaffe BE, Lui PLF, Chan I (2010) Field survey of the Samoa tsunami of 29 September 2009. Seismological Research Letters 81:577–591.

  • Satake K, Aung TT, Sawai Y, Sawai Y, Okamura Y, Win KS, Swe W, Swe C, Swe TL, Tun ST, Soe MM, Oo TZ, Zaw SH (2006) Tsunami heights and damage along the Myanmar coast from the December 2004 Sumatra-Andaman earthquake. Earth, Planet and Space 58:243–252.

  • Sawai Y, Jankaew K, Martin ME, Prendergast A, Choowong M, Charoentitirat T (2009) Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean tsunami at Phra Thong Island, Thailand. Marine Micropaleontology 73(1–2):70–79.

  • Synolakis CE, Okal EA (2005) 1992–2002: Perspective on a decade of post-tsunami surveys. Advances in Natural and Technological Hazards Research 23:1–29.

  • Synolakis CE, Bernard EN, Titov VV, Kanoglu U, González FI (2007) Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA Tech Memo OAR PMEL-135 p 55.

  • Tang L, Titov VV, Chamberlain CD (2009) Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. Journal of Geophysical Research 114:C12,025.

  • The Western States Seismic Policy Council (2011) A perspective from state and territory tsunami programs in the high tsunami risk Pacific region. The Western States Seismic Policy Council Report 2011–01:30.

  • Weiss R (2008) Sediment grains moved by passing tsunami waves: Tsunami deposits in deep water. Mar Geol 250:251–257.

  • Yamazaki Y, Cheung KF, Pawlak G, Lay T (2012) Surges along the Honolulu coast from the 2011 Tohoku tsunami. Geophysical Research Letters 39(9):L09,604, doi:10.1029/2012GL051624.

Download references

Acknowledgments

The authors are grateful to SeanPaul La Selle for assistance in acquiring and processing the data. This research was supported in part by NSF Grants DMS-0914942 and DMS-1216732, NSF RAPID Grant DMS-1137960, the Founders Term Professorship in Applied Mathematics at the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. LeVeque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcos, M.E.M., LeVeque, R.J. Validating Velocities in the GeoClaw Tsunami Model Using Observations near Hawaii from the 2011 Tohoku Tsunami. Pure Appl. Geophys. 172, 849–867 (2015). https://doi.org/10.1007/s00024-014-0980-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0980-y

Keywords

Navigation