Skip to main content
Log in

Mechanisms of Transient Postseismic Deformation Following the 2001 Mw 7.8 Kunlun (China) Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Using global positioning system (GPS) technology, significant postseismic surface displacements were observed within the first 4 months after the 2001 Mw 7.8 Kunlun earthquake which occurred in China. In this study, we investigated the mechanisms that may have possibly contributed to the postseismic deformations that have been observed. Based on the modeling results, we find that an afterslip model can interpret postseismic displacements in the near field even when the fault plane is extended to the bottom of the crust (~70 km). Models based on the viscoelastic relaxation theory showed a large discrepancy in the spatial pattern of the deformation compared with what has been observed. Thus, we infer that both mechanisms cannot interpret the observed postseismic deformation independently. A combination of afterslip and viscoelastic relaxation can further improve the data fit, especially at sites far from the fault. With maximum afterslip of ~0.4 m occurring at a depth of 10 km in the central section, the combined model shows that the estimated afterslip occurred mostly on and below the coseismic rupture plane, as well as on its eastern extension. The estimated moment released by the afterslip in the first 4 months is almost 40% of that released by the coseismic slip. The best-fitting viscoelastic relaxation model shows a “weak” upper mantle with a viscosity of ~1.0 × 1018 Pa s. The combined model also suggests the existence of a lower crust with viscosity larger than 1.0 × 1018 Pa s, although it cannot be constrained accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cakir, Z., Chablier, J. B., Armijo, R., Meyer, B., Barka, A., and Peltzer, G. (2003), Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations, Geophys J Int 155, 93–110

  • Deng, J., Gurnis, M., Kanamori, H., and Hauksson, E. (1998), Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake, Science 282, 1689–1692. doi:10.1126/science.282.5394.1689

  • Deng, J., Hudnut, K., Gurnis, M., and Hauksson, E. (1999), Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California earthquake, Geophys Res Lett 26, 3209–3212

  • Freed, A. M., and Bürgmann, R. (2004), Evidence of power-law flow in the Mojave desert mantle, Nature 430, 548–551. doi:10.1038/nature02784

  • Freed, A. M., Bürgmann, R. Calais, E., and FREYMUELLER, J. (2006), Stress dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake, Earth Planet Sci Lett 252, 481–489. doi:10.1016/j.epsl.2006.10.011

  • Freed, A. M., Bürgmann, R., and Herring, T. (2007), Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust, Geophys Res Lett 34, L19302. doi:10.1029/2007GL030959

  • Freed, A. M. (2007), Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake, Geophys Res Lett 34, L06312. doi:10.1029/2006GL029155

  • Hsu, Y. J., Bechor, N., Segall, P., Yu, S. B., Kuo L. C., and Ma, K. F. (2002), Rapid afterslip following the 1999 Chi-Chi, Taiwan Earthquake, Geophys Res Lett 29, 1754–1757. doi:10.1029/2002 GL014967

  • Jónsson, S., Segall, P., Pedersen, R., and Björnsson, G. (2003), Post-earthquake ground movements correlated to poro-pressure transients, Nature 424, 179–183. doi:10.1038/nature01776

  • Klinger, Y., Xu, X., Tapponnier, P., Woerd, J. V., Lasserre, C., and King, G. (2005), High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw ~ 7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China, Bull Seism Soc Am 95, 1970–1987. doi:10.1785/0120040233

  • Lasserre, C., Peltzer, G., Crampé, F., Klinger, Y., Woerd, J. V., and Tapponnier, P. (2005), Coseismic deformation of the 2001 Mw = 7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry, J Geophys Res 110, B12408, 1–17. doi:10.1029/2004JB003500

  • Lin, A. M., Kikuchi, M., and Fu, B. H. (2002), Co-Seismic strike-slip and rupture length produced by the 2001 Ms 8.1 central Kunlun earthquake, Science 296, 2015–2017. doi:10.1126/science.1070879

  • Lorenzo-martín, F., Roth, F., and Wang, R. (2006), Inversion for rheological parameters from postseismic surface deformation associated to the 1960 Valdivia earthquake, Chile, Geophys J Int 164. doi:10.1111/j.1365-246X.2005.02803.x

  • Matthews, M., and Segall, P. (1993), Statistical inversion of crustal deformation data and estimation of the depth distribution of slip in the 1906 earthquake, J Geophys Res 98, 12153–12163

  • Miyazaki, S., Segall, P., Fukuda, J., and Kato, T. (2004), Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties, Geophys Res Lett 31, L06623. doi:10.1029/2003GL019410

  • Owens, T. J., and Zandt, G. (1997), Implications of crustal property variations for models of Tibetan plateau evolution, Nature 387, 37–43. doi:10.1038/387037a0

  • Perfettini, H., and Avouac, J. P. (2004), Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan, J Geophys Res 109, B02304. doi:10.1029/2003JB002488

  • Peltzer, G., Rosen, P., Rogez, F., and Hudnut, K. (1998), Poroelastic rebound along the Landers 1992 earthquake surface rupture, J Geophys Res 103, 30131–30145

  • Pollitz, F. F., Peltzer, G., and Burgmann, R. (2000), Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake, J Geophys Res 105, 8035–8054

  • Pollitz, F. F. (2005), Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake, J Geophys Res 110, B08407. doi:10.1029/2005JB003672

  • Qiao, X. J., Wang, Q., Du, R. L., You, X. Z., and Tan, K. (2002), Characteristics of crustal deformation relating to Ms 8.1 Kunlun Earthquake, J Geodesy Geodyn 22, 6–11 (in Chinese)

  • Reilinger, R. E., Ergintav, S., Bürgmann, R., Mcclusky, S., Lenk, O., Barka, A., Gurekan, O., Hearn, L., and Feig, K. L. (2000), Coseismic and postseismic fault slip for the 17 August 1999, M = 7.5, Izmit, Turkey Earthquake, Science 289, 1519–1524. doi:10.1126/science.289.5484.1519

  • Ren, J. W., and Wang M. (2005), GPS measured crustal deformation of the Ms8.1 Kunlun earthquake on Novemeber 14th 2001 in Qinghai-Xizang plateau, Quat Sci 25, 34–44 (in Chinese)

  • Ryder, I., Parsons, B., Wright, T. J., and Funning, G. J. (2007), Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling, Geophys J Int 169, 1009–1027. doi:10.1111/j.1365-246X.2006.03312.x.

  • Savage, J. C., and Svarc, J. L. (1997), Postseismic deformation associated with the 1992 M w  = 7.3 Landers earthquake, southern California, J Geophys Res 102, 7565–7577

  • Shao, Z., Fu, R. S., and Xue, T. X. (2008), The numerical simulation and discussion on mechanism of post seismic deformation after Kunlun Ms 8.1 earthquake, Chin J Geophys 51, 805–816

  • Shen, Z. K., Jackson, D. D., Feng, Y., Cline, M., Kim, M., Fang, P., and Bock, Y. (1994), Postseismic deformation following the Landers earthquake, California, 28 June 1992, Bull Seism Soc Am, 84, 780–791

  • Sheu, S. Y., and Shieh, C. F. (2004), Viscoelastic-afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw 7.6, Chi-Chi (Taiwan) earthquake, Geophys J Int 159, 1112–1124. doi:10.1111/j.1365-246X.2004.02437.x

  • Wang, L., Wang, R., Roth, F., Enescu, B., Hainzl, S., and Ergintav, S. (2009), Afterslip and viscoelastic relaxation following the 1999 M7.4 Ízmit earthquake, from GPS measurements, Geophys J Int 178, 1220–1237. doi:10.1111/j.1365-246X.2009.04228.x

  • Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X., You, X. Z., Niu, Z. J., Wu, J. C., Li, Y. X., Liu, J. N., Yang, Z. Q., and Chen, Q. Z. (2001), Present-day deformation in China constrained by global positioning system measurements, Science 294, 574–575. doi:10.1126/science.1063647

  • Wang, R., Martín, F. L., and Roth, F. (2006), PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic- gravitational dislocation theory, Comput Geosci 32, 527–541. doi:10.1016/j.cageo. 2005.08.006

  • Wei, W. B., Unsworth, M., Jones, A. Booker, J., Tan, H., Nelson, D., Chen, L., Li, S., Solon, K., Bedrosian, P., Jin, S., Deng, M., Ledo, J., Kay, D., and Roberts, B. (2001), Detction of widespread fluids in the Tibetan crust by magnetotelluric studies, Science 292, 716–718. doi:10.1126/science.1010580

  • Wessel, P., and Smith, W. H. F. (1991), Free software helps map and display data, Eos Trans Am Geophys 72, 445–446

  • Wittlinger, G., Masson, F., Poupinet, G., Tapponnier, P., Jiang, M., Herquel, G., Guilbert, J., Achauer, U., Xue, G., Shi, D., and Lithoscope Kunlun Team (1996), Seismic tomography of north Tibet and Kunlun: Evidence for crustal blocks and mantle velocity contrasts. Earth Planet Sci Lett 139, 263–279

  • Wu, G. J., Gao, R., and Yu, Q. F. (1991), Integrated investigations of the Qinghai-Tibet plateau along the Yadong-Golmud geosciences transect, Chin J Geophys 34, 552–562 (in Chinese)

  • Xu, X., Yu, G., Klinger, Y., Tapponnier, P., and Woerd, J. V. (2006), Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China, J Geophys Res 111, B05316. doi:10.1029/2004JB003488, 2006

  • Zhang, C. J., Shi, Y. L., Ma, L., and Lomnitz, C. (2007), A rhelolgical model of post-seismic deformation for 2001 Kunlun, China earthquake, Mw7.8, Geofísica Int 46, 145–154

Download references

Acknowledgments

We thank Dr. Y. J. Hsu for valuable suggestions that contribute to the improvement of the initial manuscript. We are grateful to Dr. C. Lasserre for kindly providing the digital coseismic slip model of the Kunlun earthquake. We thank two anonymous reviewers and the editor Dr. E. Carminati for their valuable comments, and Dr. J. X. Cai for carefully polishing up the paper. This study was supported by the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX3-SW-153) and National Natural Science Foundation of China (40474028; 40604004).The figures were made using free GMT (Generic Mapping Tools) software (Wessel and Smith, 1991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqi Diao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, F., Xiong, X. & Wang, R. Mechanisms of Transient Postseismic Deformation Following the 2001 Mw 7.8 Kunlun (China) Earthquake. Pure Appl. Geophys. 168, 767–779 (2011). https://doi.org/10.1007/s00024-010-0154-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-010-0154-5

Keywords

Navigation