Skip to main content
Log in

Classification of String Solutions for the Self-Dual Einstein–Maxwell–Higgs Model

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with an elliptic system arising from the Einstein–Maxwell–Higgs model which describes electromagnetic dynamics coupled with gravitational fields in spacetime. Reducing this system to a single equation and setting up the radial ansatz, we classify solutions into three cases: topological solutions, nontopological solutions of type I, and nontopological solutions of type II. There are two important constants: \(a>0\) representing the gravitational constant and \(N\ge 0\) representing the total string number. When \(0\le aN<2\), we give a complete classification of all possible solutions and prove the uniqueness of solutions for a given decay rate. In particular, we obtain a new class of topological solitons, with nonstandard asymptotic value \(\sigma <0\) at infinity, when the total string number is sufficiently large such that \(1<aN<2\). We also prove the multiple existence of solutions for a given decay rate in the case \(aN \ge 2\). Our classification improves previous results which are known only for the case \(0<aN<1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogomol’nyi, E.: The stability of classical solutions. Sov. J. Nucl. Phys. 24, 449–454 (1976)

    MathSciNet  Google Scholar 

  2. Chae, D.: Global existence of solutions to the coupled Einstein and Maxwell–Higgs system in the spherical symmetry. Ann. Henri Poincaré 4, 35–62 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chae, D.: On the multi-string solutions of the self-dual static Einstein–Maxwell–Higgs system calc. Var. PDE 20, 47–63 (2004)

    Article  MATH  Google Scholar 

  4. Chae, D.: Existence of multistring solutions of self-gravitating massive \(W\)-boson. Lett. Math. Phys. 73, 123–134 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Chae, D., Imanuvilov, O.Y.: The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory. Commun. Math. Phys. 215, 119–142 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chan, H., Fu, C.-C., Lin, C.-S.: Non-topological multi-vortex solutions to the self-dual Chern–Simons–Higgs equation. Commun. Math. Phys. 231, 189–221 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Hastings, S., McLeod, J.B., Yang, Y.: A nonlinear elliptic equation arising from gauge field theory and cosmology. Proc. R. Soc. A 446, 453–478 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chern, J., Yang, S.-Z.: Evaluating solutions on an elliptic problem in a gravitational gauge field theory. J. Funct. Anal. 265, 1240–1263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choe, K., Han, J., Lin, C.-S.: Bubbling solutions for the Chern–Simons gauged \( O(3)\) sigma model in \(\mathbb{R}^{2}\). Disc. Cont. Dyn. Syst. 34, 2703–2728 (2014)

    Article  MATH  Google Scholar 

  10. Choe, K., Han, J., Lin, C.-S., Lin, T.-C.: Uniqueness and solution structure of nonlinear equations arising from the Chern–Simons gauged \(O(3)\) sigma models. J. Differ. Equ. 255, 2136–2166 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Choe, K., Kim, N., Lin, C.-S.: Existence of self-dual non-topological solutions in the Chern–Simons Higgs model. Ann. Inst. Henri Poincaré Anal. Nonlinear 28, 837–852 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Christodoulou, D.: The problem of a self-graviting scalar field. Commun. Math. Phys. 105, 337–361 (1986)

    Article  ADS  MATH  Google Scholar 

  13. Comtet, A., Gibbons, G.: Bogomol’nyi bounds for cosmic strings. Nucl. Phys. B 299, 719–733 (1988)

    Article  ADS  Google Scholar 

  14. Hindmarsh, M., Kibble, T.: Cosmic strings. Rep. Prog. Phys. 58, 477–562 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hong, J., Kim, Y., Pac, P.Y.: Multivortex solutions of the Abelian Chern–Simons–Higgs theory. Phys. Rev. Lett. 64, 2230–2233 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Jackiw, R., Weinberg, E.J.: Self-dual Chen–Simons vortices. Phys. Rev. Lett. 64, 2234–2237 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jaffe, A., Taubes, C.H.: Vortices and Monopoles. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  18. Kimm, K., Lee, K., Lee, T.: Anyonic Bogomol’nyi solitons in a gauged \(O(3)\) sigma model. Phys. Rev. D 53, 4436–4440 (1996)

    Article  ADS  Google Scholar 

  19. Lin, C.-S., Yan, S.: Bubbling solutions for relativistic Abelian Chern–Simons model on a torus. Commun. Math. Phys. 297, 733–758 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lin, C.-S., Yan, S.: Existence of bubbling solutions for Chern–Simons model on a torus. Arch. Ration. Mech. Anal. 207, 353–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Linet, B.: A vortex-line model for a system of cosmic strings in equilibrium. Gen. Relativ. Gravity 20, 451–456 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Manton, M., Sutcliff, P.: Topological Solitons. Cambridge Monograph on Mathematical Physics. Cambridge University Press, New York (2007)

    Google Scholar 

  23. Poliakovsky, A., Tarantello, G.: On a planar Liouville-type problem in the study of selfgravitating strings. J. Differ. Equ. 252, 3668–3693 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Spruck, J., Yang, Y.: Topological solutions in the self-dual Chern–Simons theory. Ann. Inst. Henri Poincaré Anal. Non Linear 12, 75–97 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Spruck, J., Yang, Y.: Regular stationary solutions of the cylindrically symmetric Einstein-matter-gauge equations. J. Math. Anal. Appl. 195, 160–190 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Taubes, C.: On the equivalence of the first and second order equations for gauge theories. Commun. Math. Phys. 75, 207–227 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Taubes, C.: Arbitrary \(N\)-vortex solutions to the first order Ginzburg–Landau equations. Commun. Math. Phys. 72, 277–292 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Witten, E.: Some exact multipseudoparticle solutions of classical Yang–Mills theory. Phys. Rev. Lett. 38, 121–124 (1977)

    Article  ADS  Google Scholar 

  29. Yang, Y.: An equivalence theorem for string solutions of the Einstein matter-gauge equations. Lett. Math. Phys. 90, 79–90 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Yang, Y.: Prescribing topological defects for the coupled Einstein and Abelian Higgs equations. Commun. Math. Phys. 170, 541–582 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yang, Y.: Coexistence of vortices and antivortices in an Abelian gauge theory. Phys. Rev. Lett. 80, 26–29 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer Monographs in Mathematics. Springer, New York (2001)

    Book  Google Scholar 

  33. Yang, Y.: Prescribing zeros and poles on a compact Riemann surface for a gravitationally coupled Abelian gauge field theory. Commun. Math. Phys. 249, 579–609 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmin Han.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Sohn, J. Classification of String Solutions for the Self-Dual Einstein–Maxwell–Higgs Model. Ann. Henri Poincaré 20, 1699–1751 (2019). https://doi.org/10.1007/s00023-019-00788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00788-1

Mathematics Subject Classification

Navigation