Skip to main content
Log in

When Do Composed Maps Become Entanglement Breaking?

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

For many completely positive maps repeated compositions will eventually become entanglement breaking. To quantify this behaviour we develop a technique based on the Schmidt number: If a completely positive map breaks the entanglement with respect to any qubit ancilla, then applying it to part of a bipartite quantum state will result in a Schmidt number bounded away from the maximum possible value. Iterating this result puts a successively decreasing upper bound on the Schmidt number arising in this way from compositions of such a map. By applying this technique to completely positive maps in dimension three that are also completely copositive we prove the so-called PPT squared conjecture in this dimension. We then give more examples of completely positive maps where our technique can be applied, e.g. maps close to the completely depolarizing map, and maps of low rank. Finally, we study the PPT squared conjecture in more detail, establishing equivalent conjectures related to other parts of quantum information theory, and we prove the conjecture for Gaussian quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(06), 629–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)

    Article  ADS  Google Scholar 

  3. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94(16), 160502 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Lami, L., Giovannetti, V.: Entanglement-breaking indices. J. Math. Phys. 56(9), 092201 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. De Pasquale, A., Giovannetti, V.: Quantifying the noise of a quantum channel by noise addition. Phys. Rev. A 86(5), 052302 (2012)

    Article  ADS  Google Scholar 

  6. De Pasquale, A., Mari, A., Porzio, A., Giovannetti, V.: Amendable Gaussian channels: restoring entanglement via a unitary filter. Phys. Rev. A 87(6), 062307 (2013)

    Article  ADS  Google Scholar 

  7. Lami, L., Giovannetti, V.: Entanglement-saving channels. J. Math. Phys. 57(3), 032201 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Christandl, M.: PPT square conjecture. In: Banff International Research Station Workshop: Operator Structures in Quantum Information Theory (2012)

  9. Bäuml, S., Christandl, M., Horodecki, K., Winter, A.: Limitations on quantum key repeaters. Nat. Commun. 6, 6908 (2015)

    Article  ADS  Google Scholar 

  10. Christandl, M., Ferrara, R.: Private states, quantum data hiding, and the swapping of perfect secrecy. Phys. Rev. Lett. 119(22), 220506 (2017)

    Article  ADS  Google Scholar 

  11. Kennedy, M., Manor, N.A., Paulsen, V.I.: Composition of PPT maps. Quantum Inf. Comput. 18(5 & 6), 0472–0480 (2018)

    MathSciNet  Google Scholar 

  12. Rahaman, M., Jaques, S., Paulsen, V.I.: Eventually entanglement breaking maps. J. Math. Phys. 59(6), 062201 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Terhal, B.M., Horodecki, P.: Schmidt number for density matrices. Phys. Rev. A 61(4), 040301 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Skowronek, Ł., Størmer, E., Życzkowski, K.: Cones of positive maps and their duality relations. J. Math. Phys. 50(6), 062106 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Chruściński, D., Kossakowski, A.: On partially entanglement breaking channels. Open Syst. Inf. Dyn. 13(1), 17–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Tang, W.-S.: On positive linear maps between matrix algebras. Linear Algebra Appl. 79, 33–44 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Sanpera, A., Bruß, D., Lewenstein, M.: Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63(5), 050301 (2001)

    Article  ADS  Google Scholar 

  21. Yang, Y., Leung, D.H., Tang, W.-S.: All 2-positive linear maps from M3(C) to M3(C) are decomposable. Linear Algebra Appl. 503, 233–247 (2016)

    Article  MathSciNet  Google Scholar 

  22. Huber, M., Lami, L., Lancien, C., Müller-Hermes, A.: High-dimensional entanglement in states with positive partial transposition. Phys. Rev. Lett. 121, 200503 (2018)

    Article  ADS  Google Scholar 

  23. Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A 66(6), 062311 (2002)

    Article  ADS  Google Scholar 

  24. Johnston, N.: Separability from spectrum for qubit–qudit states. Phys. Rev. A 88(6), 062330 (2013)

    Article  ADS  Google Scholar 

  25. Lami, L., Huber, M.: Bipartite depolarizing maps. J. Math. Phys. 57(9), 092201 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Cariello, D.: Separability for weakly irreducible matrices. Quantum Inf. Comput. 14(15–16), 1308–1337 (2014)

    MathSciNet  Google Scholar 

  27. Cariello, D.: Does symmetry imply PPT property? Quantum Inf. Comput. 15(9–10), 812–824 (2015)

    MathSciNet  Google Scholar 

  28. Heinosaari, T., Jivulescu, M.A., Reeb, D., Wolf, M.M.: Extending quantum operations. J. Math. Phys. 53(10), 102208 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Moravčíková, L., Ziman, M.: Entanglement-annihilating and entanglement-breaking channels. J. Phys. A Math. Theor. 43(27), 275306 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Müller-Hermes, A., Reeb, D., Wolf, M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57(1), 015202 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Filippov, S.N., Rybár, T., Ziman, M.: Local two-qubit entanglement-annihilating channels. Phys. Rev. A 85(1), 012303 (2012)

    Article  ADS  Google Scholar 

  32. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Størmer, E.: Duality of cones of positive maps. Preprint arXiv:0810.4253 (2008)

  34. Müller-Hermes, A.: Decomposability of linear maps under tensor powers. J. Math. Phys. 59(10), 102203 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Collins, B., Yin, Z., Zhong, P.: The PPT square conjecture holds generically for some classes of independent states. J. Phys. A Math. Theor. 51(42), 425301 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Vollbrecht, K.G.H., Wolf, M.M.: Activating distillation with an infinitesimal amount of bound entanglement. Phys. Rev. Lett. 88(24), 247901 (2002)

    Article  ADS  Google Scholar 

  37. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001)

    Article  ADS  Google Scholar 

  38. Audenaert, K., Eisert, J., Jané, E., Plenio, M., Virmani, S., De Moor, B.: Asymptotic relative entropy of entanglement. Phys. Rev. Lett. 87(21), 217902 (2001)

    Article  ADS  Google Scholar 

  39. Christandl, M., Schuch, N., Winter, A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311(2), 397–422 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction, vol. 16. Walter de Gruyter, Berlin (2013)

    MATH  Google Scholar 

  42. Chen, L., Yang, Y., Tang, W.-S.: Schmidt number of bipartite and multipartite states under local projections. Quantum Inf. Process. 16(3), 75 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Kraus, B., Cirac, J., Karnas, S., Lewenstein, M.: Separability in \(2\times \) N composite quantum systems. Phys. Rev. A 61(6), 062302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We thank Daniel Cariello for pointing out how his results [26, 27] together with the techniques from [22] imply Corollary 3.5. We also thank Ion Nechita for pointing out the different version of Theorem A.1. MC and AMH acknowledge financial support from the European Research Council (ERC Grant Agreement no 337603) and VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). MW acknowledges the hospitality of the QMATH Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Müller-Hermes.

Additional information

Communicated by David Pérez-García.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christandl, M., Müller-Hermes, A. & Wolf, M.M. When Do Composed Maps Become Entanglement Breaking?. Ann. Henri Poincaré 20, 2295–2322 (2019). https://doi.org/10.1007/s00023-019-00774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00774-7

Navigation