Skip to main content
Log in

Quantum Compression Relative to a Set of Measurements

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this work, we investigate the possibility of compressing a quantum system to one of smaller dimension in a way that preserves the measurement statistics of a given set of observables. In this process, we allow for an arbitrary amount of classical side information. We find that the latter can be bounded, which implies that the minimal compression dimension is stable in the sense that it cannot be decreased by allowing for small errors. Various bounds on the minimal compression dimension are proven, and an SDP-based algorithm for its computation is provided. The results are based on two independent approaches: an operator algebraic method using a fixed-point result by Arveson and an algebro-geometric method that relies on irreducible polynomials and Bézout’s theorem. The latter approach allows lifting the results from the single-copy level to the case of multiple copies and from completely positive to merely positive maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubrun, G., Lancien, C.: Zonoids and sparsification of quantum measurements. Positivity 20(1), 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arveson, W.: Subalgebras of \(C^*\)-algebras II. Acta Math. 128(1), 271–308 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, New York (1998)

    Google Scholar 

  4. Bix, R.: Conics and Cubics, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  5. Blackadar, B.: Operator Algebras: Theory of C*-Algebras and Von Neumann Algebras. Volume 13 of Encyclopaedia of Mathematical Sciences. Springer, New York (2006)

    Book  MATH  Google Scholar 

  6. Böttcher, A., Spitkovsky, I.M.: A gentle guide to the basics of two projections theory. Linear Algebra Appl. 432(6), 1412–1459 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dixmier, J.: Les algèbres d’opérateurs dans l’espace Hilbertien. Gauthier-Villars, (1957)

  10. Farenick, D.R.: Algebras of Linear Transformations. Springer, New York (2001)

    Book  MATH  Google Scholar 

  11. George, A., Ikramov, K.D.: Common invariant subspaces of two matrices. Linear Algebra Appl. 287(1), 171–179 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Güler, O.: Hyperbolic polynomials and interior point methods for convex programming. Math. Oper. Res. 22(2), 350–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heinosaari, T., Jivulescu, M.A., Reeb, D., Wolf, M.M.: Extending quantum operations. J. Math. Phys. 53(10), 102208 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Horn, R.A.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  16. Heinosaari, T., Ziman, M.: The Mathematical Language of Quantum Theory. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  17. Kato, T.: Perturbation Theory for Linear Operators. Volume 132 of Die Grundlehren der mathematischen Wissenschaften. Springer, New York (1966)

    Google Scholar 

  18. Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369(5), 431–548 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kech, M., Wolf, M.M.: Constrained quantum tomography of semi-algebraic sets with applications to low-rank matrix recovery. Inf. Inference 6(2), 171–195 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Lindblad, G.: A general no-cloning theorem. Lett. Math. Phys. 47(2), 189–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewis, A.S., Parrilo, P.A., Ramana, M.V.: The Lax conjecture is true. Proc. Am. Math. Soc. 133, 2495–2499 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lomonosov, V., Rosenthal, P.: The simplest proof of Burnside’s theorem on matrix algebras. Linear Algebra Appl. 383, 45–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marshall, M.: Positive Polynomials and Sums of Squares. Volume 146 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2008)

    Book  Google Scholar 

  24. Murota, K., Kanno, Y., Kojima, M., Kojima, S.: A numerical algorithm for block-diagonal decomposition of matrix \(\ast \)-algebras with application to semidefinite programming. Jpn. J. Ind. Appl. Math. 27(1), 125–160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information, 10th anniversary edition. Cambridge University Press, Cambridge (2010)

  26. Nuij, W.: A note on hyperbolic polynomials. Math. Scand. 23, 69–72 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  28. Porkolab, L., Khachiyan, L.: On the complexity of semidefinite programs. J. Glob. Optim. 10, 351–365 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schuhmacher, B.: Quantum coding. Phys. Rev. A 51(4), 2738–2747 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  31. Stark, C.J., Harrow, A.W.: Compressibility of positive semidefinite factorizations and quantum models. IEEE Trans. Inf. Theory 62(5), 2867–2880 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Terhal, B.M., Horodecki, P.: A Schmidt number for density matrices. Phys. Rev. A 61(4), 040301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Vinnikov, V.: Complete description of determinantal representations of smooth irreducible curves. Linear Algebra Appl. 125, 103–140 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. von zur Gathen, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  35. Wehner, S., Christandl, M., Doherty, A.C.: Lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78, 062112 (2008)

    Article  ADS  Google Scholar 

  36. Wedin, P.: On Angles Between Subspaces of a Finite Dimensional Inner Product Space, pp. 263–285. Springer, New York (1983)

    MATH  Google Scholar 

  37. Winter, A.: “Extrinsic” and “intrinsic” data in quantum measurements: asymptotic convex decomposition of positive operator valued measures. Commun. Math. Phys. 244(1), 157–185 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Wolf, M.M.: Quantum channels and operations. Lecture notes (2012). http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bluhm.

Additional information

Communicated by David Perez-Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluhm, A., Rauber, L. & Wolf, M.M. Quantum Compression Relative to a Set of Measurements. Ann. Henri Poincaré 19, 1891–1937 (2018). https://doi.org/10.1007/s00023-018-0660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0660-z

Navigation