Skip to main content
Log in

Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Open quantum walks (OQWs), originally introduced in Attal et al. (J Stat Phys 147(4):832–852, 2012), are quantum generalizations of classical Markov chains. Recently, natural continuous time models of OQW have been developed in Pellegrini (J Stat Phys 154(3):838–865, 2014). These models, called continuous time open quantum walks (CTOQWs), appear as natural continuous time limits of discrete time OQWs. In particular, they are quantum extensions of continuous time Markov chains. This article is devoted to the study of homogeneous CTOQW on \(\mathbb {Z}^d\). We focus namely on their associated quantum trajectories which allow us to prove a central limit theorem for the “position” of the walker as well as a large deviation principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attal, S., Guillotin-Plantard, N., Sabot, C.: Central limit theorems for open quantum random walks and quantum measurement records. Ann. Henri Poincaré 16(1), 15–43 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147(4), 832–852 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Time the Diffusive Case, vol. 782. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  4. Barchielli, A., Pellegrini, C.: Jump-diffusion unravelling of a non-Markovian generalized Lindblad master equation. J. Math. Phys. 51(11), 112104 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bauer, M., Bernard, D., Tilloy, A.: The open quantum Brownian motions. J. Stat. Mech. Theory Exp. 9, 09001 (2014)

    MathSciNet  Google Scholar 

  6. Breuer, H.-P.: Non-Markovian generalization of the Lindblad theory of open quantum systems. Phys. Rev. A (3) 75(2), 022103 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Carbone, R., Pautrat, Y.: Homogeneous open quantum random walks on a lattice. J. Stat. Phys. 160(5), 1125–1153 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Carbone, R., Pautrat, Y.: Open quantum random walks: reducibility, period, ergodic properties. Ann. Henri Poincaré 17(1), 99–135 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Christensen, E., Evans, D.: Cohomology of operator algebras and quantum dynamical semigroups. J. Lond. Math. Soc. (2) 20(2), 358–368 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crimaldi, I., Pratelli, L.: Convergence results for multivariate martingales. Stoch. Process. Appl. 115(4), 571–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davies, E.B.: Quantum stochastic processes. II. Commun. Math. Phys. 19, 83–105 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Volume 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Ethier, S., Kurtz, T.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  14. Evans, D., Høegh-Krohn, R.: Spectral properties of positive maps on \(C^*\)-algebras. J. Lond. Math. Soc. (2) 17(2), 345–355 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gudder, S.: Quantum Markov chains. J. Math. Phys. 49(7), 072105 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Jakšić, V., Pillet, C.-A., Westrich, M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154(1–2), 153–187 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer Science & Business Media, Berlin, Heidelberg (2013)

  18. Kümmerer, B., Maassen, H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A 37(49), 11889–11896 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Makowski, A.M., Shwartz, A.: The Poisson equation for countable Markov chains: probabilistic methods and interpretations. In: Feinberg, E.A., Shwartz, A. (eds.) Handbook of Markov Decision Processes, vol. 40, pp. 269–303. Springer, Boston (2002)

  20. Marais, A., Sinayskiy, I., Kay, A., Petruccione, F., Ekert, A.: Decoherence-assisted transport in quantum networks. New J. Phys. 15, 013038 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pellegrini, C.: Continuous time open quantum random walks and non-Markovian Lindblad master equations. J. Stat. Phys. 154(3), 838–865 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Pellegrini, C., Petruccione, F.: Non-Markovian quantum repeated interactions and measurements. J. Phys. A 42(42), 425304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Volume 293 of Grundlehren der Mathematischen Wissenschaften, 3rd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  24. Sinayskiy, I., Petruccione, F.: Efficiency of open quantum walk implementation of dissipative quantum computing algorithms. Quantum Inf. Process. 11(5), 1301–1309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Bringuier.

Additional information

Communicated by Claude Alain Pillet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bringuier, H. Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks. Ann. Henri Poincaré 18, 3167–3192 (2017). https://doi.org/10.1007/s00023-017-0597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0597-7

Navigation