Skip to main content
Log in

Derivation of Ray Optics Equations in Photonic Crystals via a Semiclassical Limit

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this work, we present a novel approach to the ray optics limit: we rewrite the dynamical Maxwell equations in Schrödinger form and prove Egorov-type theorems, a robust semiclassical technique. We implement this scheme for periodic light conductors, photonic crystals, thereby making the quantum-light analogy between semiclassics for the Bloch electron and ray optics in photonic crystals rigorous. One major conceptual difference between the two theories, though, is that electromagnetic fields are real, and hence, we need to add one step in the derivation to reduce it to a single-band problem. Our main results, Theorem 3.7 and Corollary 3.9, give a ray optics limit for quadratic observables and, among others, apply to local averages of energy density, the Poynting vector and the Maxwell stress tensor. Ours is the first rigorous derivation of ray optics equations which include all subleading-order terms, some of which are also new to the physics literature. The ray optics limit we prove applies to photonic crystals of any topological class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G., Palombaro, M., Rauch, J.: Diffraction of Bloch wave packets for Maxwell’s equations. Commun. Contemp. Math. 15, 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellissard, J., Rammal, R.: An algebraic semi-classical approach to Bloch electrons in a magnetic field. J. Phys. Fr. 51, 1803–1830 (1990)

    Article  Google Scholar 

  3. Bergmann, E.E.: Electromagnetic propagation in homogeneous media with hermitian permeability and permittivity. Bell Syst. Tech. J. 61, 935–948 (1982)

    Article  MathSciNet  Google Scholar 

  4. Bliokh, K.Y., Bekshaev, A.Y., Nori, F.: Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys. 15, 033026 (2013)

    Article  ADS  Google Scholar 

  5. Bliokh, K.Y., Bliokh, Y.P.: Topological spin transport of photons: the optical Magnus effect and Berry phase. Phys. Lett. A 333, 181–186 (2004)

    Article  ADS  MATH  Google Scholar 

  6. Bliokh, K.Y., Kivshar, Y.S., Nori, F.: Magnetoelectric effects in local light-matter interactions. Phys. Rev. Lett. 113, 033601 (2014)

    Article  ADS  Google Scholar 

  7. Bliokh, K.Y., Rodríguez-Fortuño, F.J., Nori, F., Zayats, A.V.: Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015)

    Article  ADS  Google Scholar 

  8. De Nittis, G., Lein, M.: Applications of magnetic \(\Psi \)DO techniques to SAPT—beyond a simple review. Rev. Math. Phys. 23, 233–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Nittis, G., Lein, M.: Effective light dynamics in perturbed photonic crystals. Commun. Math. Phys. 332, 221–260 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. De Nittis, G., Lein, M.: On the role of symmetries in photonic crystals. Ann. Phys. 350, 568–587 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. De Nittis, G., Lein, M.: The perturbed Maxwell operator as pseudodifferential operator. Doc. Math. 19, 63–101 (2014)

    MathSciNet  MATH  Google Scholar 

  12. De Nittis, G., Lein, M.: On the role of symmetries and topology in classical electromagnetism (in preparation) (2016)

  13. Esposito, L., Gerace, D.: Topological aspects in the photonic crystal analog of single-particle transport in quantum Hall systems. Phys. Rev. A 88, 013853 (2013)

    Article  ADS  Google Scholar 

  14. Figotin, A., Vitebskiy, I.: Frozen light in photonic crystals with degenerate band edge. Phys. Rev. E 74, 066613 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gat, O., Lein, M., Teufel, S.: Semiclassics for particles with spin via a Wigner–Weyl-type calculus. Ann. Henri Poincaré 15, 1967–1991 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Jackson, J.D.: Classical Electrodynamics. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  17. Kuchment, P., Levendorskiî, S.: On the structure of spectra of periodic elliptic operators. Trans. Am. Math. Soc. 354, 537–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Littlejohn, R.G., Flynn, W.G.: Geometric phases and the Bohr–Sommerfeld quantization of multicomponent wave fields. Phys. Rev. Lett. 66, 2839–2842 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Longhi, S.: Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009)

    Article  Google Scholar 

  20. Morame, A.: The absolute continuity of the spectrum of Maxwell operator in periodic media. J. Math. Phys. 41, 7099–7108 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Onoda, M., Murakami, S., Nagaosa, N.: Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004)

    Article  ADS  Google Scholar 

  22. Onoda, M., Murakami, S., Nagaosa, N.: Geometrical aspects in optical wave-packet dynamics. Phys. Rev. E 74, 066610 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Panati, G., Spohn, H., Teufel, S.: Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242, 547–578 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Panati, G., Spohn, H., Teufel, S.: Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7, 145–204 (2003)

    Article  MathSciNet  Google Scholar 

  25. Panati, G., Teufel, S.: Propagation of Wigner functions for the Schrödinger equation with a perturbed periodic potential. In: Blanchard, P., Dell’Antonio, G. (eds.) Multiscale Methods in Quantum Mechanics. Birkhäuser, Boston (2004)

    Google Scholar 

  26. Perlick, V.: Ray Optics, Fermat’s Principle, and Applications to General Relativity. Lecture Notes in Physics, vol. 61. Springer (2000)

  27. Pfeifer, R.N.C., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop, H.: Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197–1216 (2007)

    Article  ADS  Google Scholar 

  28. Pozar, D.M.: Microwave Engineering. Wiley, Hoboken (1998)

    Google Scholar 

  29. Raghu, S., Haldane, F.D.M.: Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008)

    Article  ADS  Google Scholar 

  30. Rangarajan, A., and Gurumoorthy, K. S.: A Schrödinger wave equation approach to the Eikonal equation: application to image analysis. In: D. Cremers, Y. Boykov, A. Blake, F. Schmidt (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, vol. 5681, pp. 140–153. Springer, Berlin (2009)

  31. Rechtsman, M.C., Zeuner, J.M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M., Szameit, A.: Photonic Floquet topological insulators. Nature 496, 196–200 (2013)

    Article  ADS  Google Scholar 

  32. Robert, D.: Autour de l’Approximation Semi-Classique. Birkhäuser, Basel (1987)

    MATH  Google Scholar 

  33. Siddiqi, K., Tannenbaum, A., Zucker, S. W.: A Hamiltonian approach to the Eikonal equation. In: E. Hancock, M. Pelillo (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, vol. 1654, pp. 1–13. Springer (1999)

  34. Someda, C.G.: Electromagnetic Waves. CRC Press Inc, Boca Raton (1998)

    Google Scholar 

  35. Stiepan, H.-M., Teufel, S.: Semiclassical approximations for Hamiltonians with operator-valued symbols. Commun. Math. Phys. 320, 821–849 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sundaram, G., Niu, Q.: Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999)

    Article  ADS  Google Scholar 

  37. Suslina, T.: Absolute continuity of the spectrum of periodic operators of mathematical physics. Journées Équations aux dérivées partielles 1–13, 2000 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics, vol. 1821. Springer (2003)

  39. Wang, Z., Chong, Y.D., Joannopoulos, J.D., Soljačić, M.: Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008)

    Article  ADS  Google Scholar 

  40. Wang, Z., Chong, Y.D., Joannopoulos, J.D., Soljačić, M.: Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Lein.

Additional information

Communicated by Jean Bellissard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Nittis, G., Lein, M. Derivation of Ray Optics Equations in Photonic Crystals via a Semiclassical Limit. Ann. Henri Poincaré 18, 1789–1831 (2017). https://doi.org/10.1007/s00023-017-0552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0552-7

Navigation