Skip to main content
Log in

Classical and Quantum Parts of the Quantum Dynamics: The Discrete-Time Case

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In the study of open quantum systems modeled by a unitary evolution of a bipartite Hilbert space, we address the question of which parts of the environment can be said to have a “classical action” on the system, in the sense of acting as a classical stochastic process. Our method relies on the definition of the Environment Algebra, a relevant von Neumann algebra of the environment. With this algebra we define the classical parts of the environment and prove a decomposition between a maximal classical part and a quantum part. Then we investigate what other information can be obtained via this algebra, which leads us to define a more pertinent algebra: the Environment Action Algebra. This second algebra is linked to the minimal Stinespring representations induced by the unitary evolution on the system. Finally, in finite dimension we give a characterization of both algebras in terms of the spectrum of a certain completely positive map acting on the states of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar, J.-P., Berglund, N.: The effect of classical noise on a quantum two-level system. Journal of Mathematical Physics 49(10), 102102 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Attal, S.: Lectures on Quantum Noise Theory. In preparation

  3. Attal, S., Deschamps, J., Pellegrini, C.: Classical Noises Emerging from Quantum Environments

  4. Attal, S., Dhahri, A.: Repeated quantum interactions and unitary random walks. J. Theoret. Probab. 23(2), 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59–104 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Time. Volume 782 of Lecture Notes in Physics. Springer, Heidelberg (2009). (The diffusive case)

  7. Barchielli, A., Gregoratti, M.: Quantum continuous measurements: the stochastic Schrödinger equations and the spectrum of the output. Quantum Meas. Quantum Metrol. 1, 34–56 (2013)

    ADS  MATH  Google Scholar 

  8. Davies, E.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Deschamps, J., Nechita, I., Pellegrini, C.: On some classes of bipartite unitary operators. ArXiv e-prints, Sept. (2015)

  10. Fagnola, F.: Quantum Markov semigroups and quantum flows. Proyecciones 18(3), 144 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93(3), 301–323 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras: Elementary Theory, vol. 1. American Mathematical Soc., Providence (1997)

    MATH  Google Scholar 

  13. Kümmerer, B., Maassen, H.: The essentially commutative dilations of dynamical semigroups on \(M_n\). Commun. Math. Phys. 109(1), 1–22 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and its Applications, 2nd edn. Springer Series in Statistics, Springer, New York (2011)

    Book  MATH  Google Scholar 

  15. Mendl, C., Wolf, M.: Unital quantum channels—convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289(3), 1057–1086 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Meyer, P.-A.: Quantum Probability for Probabilists. Volume1538 of Lecture Notes in Mathematics. Springer, Berlin (1993)

    Book  Google Scholar 

  17. Neumann, J.: Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Mathematische Annalen 102(1), 370–427 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pellegrini, C.: Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems. Stoch. Process. Appl. 120(9), 1722–1747 (2010)

    Article  MATH  Google Scholar 

  19. Pellegrini, C.: Markov chains approximation of jump-diffusion stochastic master equations. Ann. Inst. Henri Poincaré Probab. Stat. 46(4), 924–948 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Rebolledo, R.: Unraveling open quantum systems: classical reductions and classical dilations of quantum Markov semigroups. Conflu. Math. 1(1), 123–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I., 2nd edn. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). (Functionalanalysis)

  22. Saira, O.-P., Bergholm, V., Ojanen, T., Möttönen, M.: Equivalent qubit dynamics under classical and quantum noise. Phys. Rev. A 75, 012308 (2007)

    Article  ADS  Google Scholar 

  23. Stinespring, W.F.: Positive functions on \(C^*\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Takesaki, M.: Theory of Operator Algebras. I. Springer, New York (1979)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Bardet.

Additional information

Communicated by Claude Alain Pillet.

Work supported by ANR-14-CE25-0003 “StoQ”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardet, I. Classical and Quantum Parts of the Quantum Dynamics: The Discrete-Time Case. Ann. Henri Poincaré 18, 955–981 (2017). https://doi.org/10.1007/s00023-016-0517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0517-2

Navigation