Skip to main content
Log in

Bifurcating Solutions of the Lichnerowicz Equation

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We give an exhaustive description of bifurcations and of the number of solutions of the vacuum Lichnerowicz equation with positive cosmological constant on \({S^1\times S^2}\) with \({U(1)\times SO(3)}\)-invariant seed data. The resulting CMC slicings of Schwarzschild–de Sitter and Nariai are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgarte, T.W., Ó Murchadha, N., Pfeiffer, H.P.: Einstein constraints: uniqueness and nonuniqueness in the conformal thin sandwich approach. Phys. Rev. D75(9), 044009 (2007). arXiv:gr-qc/0610120

  2. Beig R., Heinzle J.M.: CMC-slicings of Kottler–Schwarzschild–de Sitter cosmologies. Commun. Math. Phys. 260, 673–709 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Birmingham, D.: Topological black holes in anti-de Sitter space. Class. Quantum Grav. 16, 1197–1205 (1999). arXiv:hep-th/9808032

  4. Brendle S., Marques F.C.: Blow-up phenomena for the Yamabe equation. II . J. Diff. Geom. 81, 225–250 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Chicone C.: The monotonicity of the period function for planar Hamiltonian vector fields. J. Diff. Equ. 69, 310–321 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chruściel, P.T., Mazzeo, R.: Initial data sets with ends of cylindrical type: I. The Lichnerowicz equation. Ann. H. Poincaré 16, 1231–1266 (2014). arXiv:1201.4937 [gr-qc]

  7. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eiesland J.: The group of motions of an Einstein space. Trans. Am. Math. Soc. 27, 213–245 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hebey E., Pacard F., Pollack D.: A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds. Commun. Math. Phys. 278(1), 117–132 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Heinzle, J.M.: Constant mean curvature slicings of Kantowski-Sachs space-times. Phys. Rev. D83, 084004 (2011). arXiv:1105.1987 [gr-qc]

  11. Henry G., Petean J.: Isoparametric hypersurfaces and metrics of constant scalar curvature. Asian J. Math. 18, 53–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holst M., Kungurtsev V.: Numerical bifurcation analysis of conformal formulations of the Einstein constraints. Phys. Rev. D84, 124038 (2011)

    ADS  Google Scholar 

  13. Holst, M., Meier, C.: An alternative between non-unique and negative Yamabe solutions to the conformal formulation of the Einstein constraint equations (2013). arXiv:1306.1210 [gr-qc]

  14. Isenberg J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12, 2249–2274 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Jin Q., Li Y., Xu H.: Symmetry and asymmetry: the method of moving spheres. Adv. Diff. Equ. 13(7–8), 601–640 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Khuri M.A., Marques F.C., Schoen R.M.: A compactness theorem for the Yamabe problem. J. Diff. Geom. 81, 143–196 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Ma L., Wei J.: Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds. J. Math. Pures Appl. 99(9), 174–186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maxwell, D.: A model problem for conformal parameterizations of the Einstein constraint equations. Comm. Math. Phys. 302, 697–736 (2011). arXiv:0909.5674 [gr-qc]

  19. Ngô, Q.A. Xu X.: Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds. Adv. Math. 230, 2378–2415 (2012)

  20. Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Lecture Notes in Mathematics, vol. 6, New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence (2001). Chapter 6 by E. Zehnder, Notes by R. A. Artino. (Revised reprint of the 1974 original)

  21. Petean J.: Degenerate solutions of a nonlinear elliptic equation on the sphere. Nonlinear Anal. 100, 23–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pfeiffer, H.P., and York, Jr., J.W.: Uniqueness and nonuniqueness in the Einstein constraints. Phys. Rev. Lett. 95, 091101, p. 4 (2005)

  23. Pötzsche, C.: Bifurcation theory. Lecture Notes, SS 2010, TU München (2011)

  24. Premoselli, B.: Effective multiplicity for the Einstein-scalar field Lichnerowicz equation. Calc. Var. Partial Diff. Equ. 53, 29–64 (2013). arXiv:1307.2416 [math.AP]

  25. Rabinowitz, P.H.: A global theorem for nonlinear eigenvalue problems and applicatons. Contributions to nonlinear functional analysis. In: Proceedings of Symposium of Mathematics Research Center, University of Wisconsin, Madison, pp. 11–36. Academic Press, New York (1971)

  26. Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabinowitz P.H.: Global aspects of bifurcation. Topological methods in bifurcation theory. Sém. Math. Sup., vol. 91, Presses de Université de Montréal, Montreal, pp. 63–112 (1985)

  28. Schleich, K., Witt, D.M.: A simple proof of Birkhoff’s theorem for cosmological constant. J. Math. Phys. 51(9), 112502 (2010). arXiv:0908.4110 [gr-qc]

  29. Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. Topics in calculus of variations (Montecatini Terme, 1987). Lecture Notes in Mathematics, vol. 1365, pp. 120–154. Springer, Berlin (1989)

  30. Stanciulescu, C.: Spherically symmetric solutions of the vacuum Einstein field equations with positive cosmological constant. Diploma thesis, University of Vienna. http://ubdata.univie.ac.at/AC02358808

  31. Walsh D.M.: Non-uniqueness in conformal formulations of the Einstein constraints. Class. Quantum Grav. 24, 1911–1925 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Walsh, D.M.: On the stability of solutions of the Lichnerowicz-York equation. Class. Quantum Grav. 30(9), 065007 (2013). arXiv:1210.4950 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Gicquaud.

Additional information

Communicated by James A. Isenberg.

Supported in part by the Polish Ministry of Science and Higher Education Grant Nr N N201 372736.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chruściel, P.T., Gicquaud, R. Bifurcating Solutions of the Lichnerowicz Equation. Ann. Henri Poincaré 18, 643–679 (2017). https://doi.org/10.1007/s00023-016-0501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0501-x

Navigation