Skip to main content

Advertisement

Log in

Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal

  • Visions and reflections
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs) are regarded as harbingers of metastases. Their ability to predict response to therapy, relapse, and resistance to treatment has proposed their value as putative diagnostic and prognostic indicators. CTCs represent one of the zeniths of cancer evolution in terms of cell survival; however, the triggers of CTC generation, the identification of potentially metastatic CTCs, and the mechanisms contributing to their heterogeneity and aggressiveness represent issues not yet fully deciphered. Thus, prior to enabling liquid biopsy applications to reach clinical prime time, understanding how the above mechanistic information can be applied to improve treatment decisions is a key challenge. Here, we provide our perspective on how CTCs can provide mechanistic insights into tumor pathogenesis, as well as on CTC clinical value. In doing so, we aim to (a) describe how CTCs disseminate from the primary tumor, and their link to epithelial–mesenchymal transition (EMT); (b) trace the route of CTCs through the circulation, focusing on tumor self-seeding and the possibility of tertiary metastasis; (c) describe possible mechanisms underlying the enhanced metastatic potential of CTCs; (d) discuss how CTC could provide further information on the tissue of origin, especially in cancer of unknown primary origin. We also provide a comprehensive review of meta-analyses assessing the prognostic significance of CTCs, to highlight the emerging role of CTCs in clinical oncology. We also explore how cell-free circulating tumor DNA (ctDNA) analysis, using a combination of genomic and phylogenetic analysis, can offer insights into CTC biology, including our understanding of CTC heterogeneity and tumor evolution. Last, we discuss emerging technologies, such as high-throughput quantitative imaging, radiogenomics, machine learning approaches, and the emerging breath biopsy. These technologies could compliment CTC and ctDNA analyses, and they collectively represent major future steps in cancer detection, monitoring, and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nieva JJ, Kuhn P (2012) Fluid biopsy for solid tumors: a patients companion for lifelong characterization of their disease. Futur Oncol 8:989–998

    CAS  Google Scholar 

  2. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen L, Bode AM, Dong Z (2017) Circulating tumor cells: moving biological insights into detection. Theranostics 7:2606–2619

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gkountela S, Szczerba B, Donato C, Aceto N (2016) Recent advances in the biology of human circulating tumour cells and metastasis. ESMO Open 1:1–9

    Google Scholar 

  6. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barriere G, Fici P, Gallerani G, Fabbri F, Zoli W, Rigaud M (2014) Circulating tumor cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med 2:1–8

    Google Scholar 

  8. Giuliano M, Shaikh A, Lo HC, Arpino G, De Placido S, Zhang XH, Cristofanilli M, Schiff R, Trivedi MV (2018) Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Cancer Res 78:845–852

    CAS  PubMed  Google Scholar 

  9. Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306

    PubMed  PubMed Central  Google Scholar 

  10. Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG (2019) Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. https://www.ncbi.nlm.nih.gov/pubmed/31780785.

  11. Bork U, Grützmann R, Rahbari NN, Schölch S, Distler M, Reissfelder C, Koch M, Weitz J (2014) Prognostic relevance of minimal residual disease in colorectal cancer. World J Gastroenterol 20:10296–10304

    PubMed  PubMed Central  Google Scholar 

  12. Alix-Panabières C, Pantel K (2017) Characterization of single circulating tumor cells. FEBS Lett 591:2241–2250

    PubMed  Google Scholar 

  13. Cortés-Hernández LE, Eslami-S Z, Alix-Panabières C (2019) Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer. Mol Asp Med. https://doi.org/10.1016/j.mam.2019.07.008

    Article  Google Scholar 

  14. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T, Wallwiener M et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31:539–544

    CAS  PubMed  Google Scholar 

  15. Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM, Williamson CA, Lamb CR, Taplin ME, Nakabayashi M, Chabot MS et al (2014) Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr Biol (United Kingdom) 6:388–398

    CAS  Google Scholar 

  16. Castro-Giner F, Scheidmann MC, Aceto N (2018) Beyond enumeration: Functional and computational analysis of circulating tumor cells to investigate cancer metastasis. Front Med 5:1–7

    Google Scholar 

  17. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119:1420–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mentis AA, Kararizou E (2010) Metabolism and cancer: an up-to-date review of a mutual connection. Asian Pac J Cancer Prev 11:1437–1444

    PubMed  Google Scholar 

  19. Jie XX, Zhang XY, Xu CJ (2017) Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: mechanisms and clinical applications. Oncotarget 8:81558–81571

    PubMed  PubMed Central  Google Scholar 

  20. Tiwari N, Gheldof A, Tatari M, Christofori G (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22:194–207

    CAS  PubMed  Google Scholar 

  21. Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, D’Adamo AP, Gasparini P, Volinia S (2019) Heterogeneity in circulating tumor cells: the relevance of the stem-cell subset. Cancers (Basel) 11:9–12

    Google Scholar 

  22. Mani SA, Guo W, Liao M, Eaton EN, Zhou AY, Brooks M, Reinhard F, Zhang CC, Campbell LL, Polyak K et al (2008) EMT creates cells with the properties of stem cells. Cell 133:704–715

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, Weinberg RA (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525:256–260

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Werner S, Stenzl A, Pantel K, Todenh T (2017) Isolation and molecular characterization of circulating tumor cells. Adv Exp Med Biol 994:205–228

    CAS  PubMed  Google Scholar 

  25. Theodoropoulos PA, Polioudaki H, Agelaki S, Kallergi G, Saridaki Z, Mavroudis D, Georgoulias V (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288:99–106

    CAS  PubMed  Google Scholar 

  26. Zhang X, Wei L, Li J, Zheng J, Zhang S, Zhou J (2019) Epithelial-mesenchymal transition phenotype of circulating tumor cells is associated with distant metastasis in patients with NSCLC. Mol Med Rep 19:601–608

    CAS  PubMed  Google Scholar 

  27. Milano A, Mazzetta F, Valente S, Ranieri D, Leone L, Botticelli A, Onesti CE, Lauro S, Raffa S, Torrisi MR et al (2018) Molecular detection of EMT markers in circulating tumor cells from metastatic non-small cell lung cancer patients: potential role in clinical practice. Anal Cell Pathol. https://www.ncbi.nlm.nih.gov/pubmed/29682444

  28. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman MJ, Kopetz S, Ellis LM, Meng QH, Li S (2015) Epithelial–mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res 21:899–906

    CAS  PubMed  Google Scholar 

  29. Lorentzen A, Becker PF, Kosla J, Saini M, Weidele K, Ronchi P, Klein C, Wolf MJ, Geist F, Seubert B et al (2018) Single cell polarity in liquid phase facilitates tumour metastasis. Nat Commun 9:887

    PubMed  PubMed Central  Google Scholar 

  30. Heikenwalder M, Lorentzen A (2019) The role of polarisation of circulating tumour cells in cancer metastasis. Cell Mol Life Sci 76:3765–3781

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Scheel C, Eaton EN, Li SHJ, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–940

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M, Gilles C (2018) Epithelial–mesenchymal plasticity and circulating tumor cells: travel companions to metastases. Dev Dyn 247:432–450

    PubMed  Google Scholar 

  33. Jolly MK, Boareto M, Huang B, Jia D, Lu M, Onuchic JN, Levine H, Ben-Jacob E (2015) Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol 5:1–19

    Google Scholar 

  34. Labelle M, Hynes RO (2012) The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2:1091–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun YF, Guo W, Xu Y, Shi YH, Gong ZJ, Ji Y, Du M, Zhang X, Hu B, Huang A et al (2017) Circulating tumor cells from different vascular sites exhibit spatial heterogeneity in epithelial and mesenchymal composition and distinct clinical significance in hepatocellular carcinoma. Clin Cancer Res 24:547–559

    PubMed  Google Scholar 

  36. Haeger A, Krause M, Wolf K, Friedl P (2014) Cell jamming: Collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta 1840:2386–2395

    CAS  PubMed  Google Scholar 

  37. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS (2017) Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol 27:595–607

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, Mossine VV, Deutscher SL, Pienta KJ, Quinn TP (2003) Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res 63:3805–3811

    CAS  PubMed  Google Scholar 

  39. Shen Z, Wu A, Chen X (2017) Current detection technologies for circulating tumor cells. Chem Soc Rev 46:2038–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, Telekes A (2019) Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 12:1–20

    Google Scholar 

  41. Bailey PC, Martin SS (2019) Insights on CTC biology and clinical impact emerging from advances in capture technology. Cells 8:553

    CAS  PubMed Central  Google Scholar 

  42. Huang QQ, Chen XX, Jiang W, Jin SL, Wang XY, Liu W, Guo SS, Guo JC, Zhao XZ (2019) Sensitive and specific detection of circulating tumor cells promotes precision medicine for cancer. J Cancer Metastasis Treat 5:34

    CAS  Google Scholar 

  43. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, Zuzarte PC, Borgida A, Wang TT, Li T et al (2018) Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563:579–583

    CAS  PubMed  Google Scholar 

  44. Chen H (2019) Capturing and clinical applications of circulating tumor cells with wave microfluidic chip. Appl Biochem Biotechnol. https://www.ncbi.nlm.nih.gov/pubmed/31782091

  45. Zou D, Cui D (2018) Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol Med 15:335–353

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Hamza B, Engstrom A, Zhu H, Sundaresan TK, David T, Luo X et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell-clusters. Nat Methods 12:685–691

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Au SH, Edd J, Stoddard AE, Wong KHK, Fachin F, Maheswaran S, Haber DA, Stott SL, Kapur R, Toner M (2017) Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci Rep 7:1–10

    Google Scholar 

  48. Cheng SB, Xie M, Chen Y, Xiong J, Liu Y, Chen Z, Guo S, Shu Y, Wang M, Yuan BF et al (2017) Three-dimensional scaffold chip with thermosensitive coating for capture and reversible release of individual and cluster of circulating tumor cells. Anal Chem 89:7924–7932

    CAS  PubMed  Google Scholar 

  49. Chiu TK, Chao AC, Chou WP, Liao CJ, Wang HM, Chang JH, Chen PH, Wu MH (2018) Optically-induced-dielectrophoresis (ODEP)-based cell manipulation in a microfluidic system for high-purity isolation of integral circulating tumor cell (CTC) clusters based on their size characteristics. Sens Actuators B Chem 258:1161–1173

    CAS  Google Scholar 

  50. Suo Y, Xie C, Zhu X, Fan Z, Yang Z, He H, Wei X (2017) Proportion of circulating tumor cell clusters increases during cancer metastasis. Cytom Part A 91:250–253

    Google Scholar 

  51. Pantel K, Alix-Panabières C (2014) Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep 3:1–6

    Google Scholar 

  52. Sai B, Xiang J (2018) Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 22:5776–5786

    PubMed  PubMed Central  Google Scholar 

  53. Dasgupta A, Lim AR, Ghajar CM (2017) Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol 11:40–61

    PubMed  PubMed Central  Google Scholar 

  54. Weidenfeld K, Barkan D (2018) EMT and stemness in tumor dormancy and outgrowth: are they intertwined processes? Front Oncol 8:1–6

    Google Scholar 

  55. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DYR et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt-kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJF, Bischoff J, Harich D, Kaufmann M, Diebold J et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Heyde A, Reiter JG, Naxerova K, Nowak MA (2019) Consecutive seeding and transfer of genetic diversity in metastasis. Proc Natl Acad Sci USA 116:14129–14137

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Reiter JG, Makohon-Moore AP, Gerold JM, Heyde A, Attiyeh MA, Kohutek ZA, Tokheim CJ, Brown A, DeBlasio RM, Niyazov J et al (2018) Minimal functional driver gene heterogeneity among untreated metastases. Science 361:1033–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Demeulemeester J, Kumar P, Møller EK, Nord S, Wedge DC, Peterson A, Mathiesen RR, Fjelldal R, Zamani Esteki M, Theunis K et al (2016) Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing. Genome Biol 17:1–15

    Google Scholar 

  60. Kim M, Oskarsson T, Acharyya S, Nguyen DX, Xiang H, Norton L, Massagué J (2009) Tumor self seeding by circulating cancer cells. Cell 139:1315–1326

    PubMed  PubMed Central  Google Scholar 

  61. Aguirre-Ghiso JA (2010) On the theory of tumor self-seeding: Implications for metastasis progression in humans. Breast Cancer Res 12:1–2

    Google Scholar 

  62. Dondossola E, Crippa L, Colombo B, Ferrero E, Corti A (2012) Chromogranin A regulates tumor self-seeding and dissemination. Cancer Res 72:449–459

    CAS  PubMed  Google Scholar 

  63. Zhang Y, Ma Q, Liu T, Guan G, Zhang K, Chen J, Jia N, Yan S, Chen G, Liu S et al (2016) Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells in a human osteosarcoma nude mouse model. Oncotarget 7:446–458

    CAS  PubMed  Google Scholar 

  64. Scott JG, Basanta D, Anderson ARA, Gerlee P (2013) A mathematical model of tumour selfseeding reveals secondary metastatic deposits as drivers of primary tumour growth. J R Soc Interface 10:1–9

    Google Scholar 

  65. Comen E, Norton L, Massagué J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8:369–377

    PubMed  Google Scholar 

  66. Makohon-Moore AP, Matsukuma K, Zhang M, Reiter JG, Gerold JM, Jiao Y, Sikkema L, Attiyeh MA, Yachida S, Sandone C et al (2018) Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 561:201–205

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hruban RH, Gaida MM, Thompson E, Hong SM, Noë M, Brosens LAA, Jongepier M, Offerhaus GJA, Wood LD (2019) Why is pancreatic cancer so deadly? The pathologist’s view. J Pathol 248:131–141

    PubMed  Google Scholar 

  68. Garzia L, Kijima N, Morrissy AS, De Antonellis P, Guerreiro-Stucklin A, Holgado BL, Wu X, Wang X, Parsons M, Zayne K et al (2018) A hematogenous route for medulloblastoma leptomeningeal metastases. Cell 172:1050–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ullah I, Karthik GM, Alkodsi A, Kjällquist U, Stålhammar G, Lövrot J, Martinez NF, Lagergren J, Hautaniemi S, Hartman J et al (2018) Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J Clin Investig 128:1355–1370

    PubMed  PubMed Central  Google Scholar 

  70. Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, Vilar E, Maru D, Kopetz S, Navin NE (2017) Single-cell DNA sequencing reveals a latedissemination model in metastatic colorectal cancer. Genome Res 27:1287–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hong Y, Fang F, Zhang Q (2016) Circulating tumor cell clusters: what we know and what we expect (Review). Int J Oncol 49:2206–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D, Schram E, Nieva J, Bazhenova L, Morgan A et al (2012) Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9:1–13

    Google Scholar 

  73. Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA 107:21677–21682

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Upreti M, Jamshidi-Parsian A, Koonce NA, Webber JS, Sharma SK, Asea AAA, Mader MJ, Griffin RJ (2011) Tumor-endothelial cell three-dimensional spheroids: new aspects to enhance radiation and drug therapeutics. Transl Oncol 4:365–376

    PubMed  PubMed Central  Google Scholar 

  75. Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J et al (2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:553–557. https://doi.org/10.1038/s41586-019-0915-y

    Article  CAS  PubMed  Google Scholar 

  76. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, Gorin MA, Verdone JE, Pienta KJ, Bader JS et al (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA 113:E854–E863

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Geng Y, Chandrasekaran S, Hsu JW, Gidwani M, Hughes AD, King MR (2013) Phenotypic switch in blood: effects of pro-inflammatory cytokines on breast cancer cell aggregation and adhesion. PLoS One 8:1–10

    Google Scholar 

  78. Pixberg CF, Schulz WA, Stoecklein NH, Neves RPL (2015) Characterization of DNA methylation in circulating tumor cells. Genes (Basel) 6:1053–1075

    CAS  Google Scholar 

  79. Benezeder T, Tiran V, Treitler AAN, Suppan C, Rossmann C, Stoeger H, Cote RJ, Datar RH, Balic M, Dandachi N (2017) Multigene methylation analysis of enriched circulating tumor cells associates with poor progression-free survival in metastatic breast cancer patients. Oncotarget 8:92483–92496

    PubMed  PubMed Central  Google Scholar 

  80. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C, Stirnimann CU et al (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176:98–112

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Allen TA, Gracieux D, Talib M, Tokarz DA, Hensley MT, Cores J, Vandergriff A, Tang J, de Andrade JBM, Dinh PU et al (2017) Angiopellosis as an alternative mechanism of cell extravasation. Stem Cells 35:170–180

    PubMed  Google Scholar 

  82. Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, Tang J, Dinh PU, Shen D, Qiao L et al (2019) Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential. J. Cell Sci 132:jcs231563

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Balakrishnan A, Koppaka D, Anand A, Deb B, Grenci G, Viasnoff V, Thompson EW, Gowda H, Bhat R, Rangarajan A et al (2019) Circulating tumor cell cluster phenotype allows monitoring response to treatment and predicts survival. Sci Rep 9:7933

    PubMed  PubMed Central  Google Scholar 

  84. Khoo BL, Grenci G, Jing T, Bena Lim Y, Lee SC, Thiery JP, Han J, Lim CT (2016) Liquid biopsy and therapeutic response: circulating tumor cell cultures for evaluation of anticancer treatment. Sci Adv 2:1–15

    Google Scholar 

  85. Hoefnagel LDC, van de Vijver MJ, van Slooten HJ, Wesseling P, Wesseling J, Westenend PJ, Bart J, Seldenrijk CA, Nagtegaal ID, Oudejans J et al (2010) Receptor conversion in distant breast cancer metastases. Breast Cancer Res 12:R75

    PubMed  PubMed Central  Google Scholar 

  86. Timmer M, Werner JM, Röhn G, Ortmann M, Blau T, Cramer C, Stavrinou P, Krischek B, Mallman P, Goldbrunner R (2017) Discordance and conversion rates of progesterone-, estrogen-, and HER2/neu-receptor status in primary breast cancer and brain metastasis mainly triggered by hormone therapy. Anticancer Res 37:4859–4865

    CAS  PubMed  Google Scholar 

  87. Munzone E, Nolé F, Goldhirsch A, Botteri E, Esposito A, Zorzino L, Curigliano G, Minchella I, Adamoli L, Cassatella MC et al (2010) Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer. Clin Breast Cancer 10:392–397

    CAS  PubMed  Google Scholar 

  88. Fehm T, Müller V, Aktas B, Janni W, Schneeweiss A, Stickeler E, Lattrich C, Löhberg CR, Solomayer E, Rack B et al (2010) HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat 124:403–412

    CAS  PubMed  Google Scholar 

  89. Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, Yu M, Sundaresan TK, Licausi JA, Desai R et al (2016) HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537:102–106

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Paoletti C, Larios JM, Muñiz MC, Aung K, Cannell EM, Darga EP, Kidwell KM, Thomas DG, Tokudome N, Brown ME et al (2016) Heterogeneous estrogen receptor expression in circulating tumor cells suggests diverse mechanisms of fulvestrant resistance. Mol Oncol 10:1078–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lianidou ES, Markou A, Strati A (2015) The role of CTCs as tumor biomarkers. Adv Exp Med Biol 867:341–367

    CAS  PubMed  Google Scholar 

  92. Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, Zehir A, Weigelt B, Dawson SJ, Arcila ME et al (2018) The value of cell-free DNA for molecular pathology. J Pathol 244:616–627

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Luchini C, Veronese N, Nottegar A, Cappelletti V, Daidone MG, Smith L, Parris C, Brosens LAA, Caruso MG, Cheng L et al (2019) Liquid biopsy as surrogate for tissue for molecular profiling in pancreatic cancer: a meta-analysis towards precision medicine. Cancers (Basel) 11:1152

    CAS  Google Scholar 

  94. Pantel K, Alix-panabières C (2019) Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol 16:409–424

    CAS  PubMed  Google Scholar 

  95. Siravegna G, Mussolin B, Venesio T, Marsoni S, Seoane J, Dive C, Papadopoulos N et al (2019) How liquid biopsies can change clinical practice in oncology. Ann Oncol 30:1580–1590

    CAS  PubMed  Google Scholar 

  96. Wang CH, Chang CJ, Yeh KY, Chang PH, Huang JS (2017) The prognostic value of HER2-positive circulating tumor cells in breast cancer patients: a systematic review and meta-analysis. Clin Breast Cancer 17:341–349

    CAS  PubMed  Google Scholar 

  97. Mattox AK, Bettegowda C, Zhou S, Papadopoulos N, Kinzler KW, Vogelstein B (2019) Applications of liquid biopsies for cancer. Sci Transl Med 11:1–4

    Google Scholar 

  98. Lyu M, Zhou J, Ning K, Ying B (2019) The diagnostic value of circulating tumor cells and ctDNA for gene mutations in lung cancer. Onco Targets Ther 12:2539–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Blackhall F, Frese KK, Simpson K, Kilgour E, Brady G, Dive C (2018) Will liquid biopsies improve outcomes for patients with small-cell lung cancer? Lancet Oncol 19:e470–e481

    PubMed  Google Scholar 

  100. Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, Lilja H, Schwartz L, Larson S, Fleisher M et al (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 13:7053–7058

    CAS  PubMed  Google Scholar 

  101. Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26:3213–3221

    PubMed  Google Scholar 

  102. Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 13:920–928

    CAS  PubMed  Google Scholar 

  103. Wang F, Yang XQ, YangS WBC, Feng MH, Tu JC (2011) A higher number of circulating tumor cells (CTC) in peripheral blood indicates poor prognosis in prostate cancer patients—a meta-analysis. Asian Pac J Cancer Prev 12:2629–2635

    PubMed  Google Scholar 

  104. Hall CS, Karhade M, Laubacher BA, Kuerer HM, Krishnamurthy S, DeSnyder S, Anderson AE, Valero V, Ueno NT, Li Y et al (2015) Circulating tumor cells and recurrence after primary systemic therapy in stage III inflammatory breast cancer. J Natl Cancer Inst 107:11–14

    Google Scholar 

  105. Li J, Fu W, Zhang W, Li P (2018) High number of circulating tumor cells predicts poor survival of cutaneous melanoma patients in China. Med Sci Monit 24:324–331

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T (2019) The biology and clinical potential of circulating tumor cells. Radiol Oncol 53:131–147

    PubMed  PubMed Central  Google Scholar 

  107. Rostami P, Kashaninejad N, Moshksayan K, Saidi MS, Firoozabadi B, Nguyen NT (2019) Novel approaches in cancer management with circulating tumor cell clusters. J Sci Adv Mater Devices 4:1–18

    Google Scholar 

  108. Murlidhar V, Reddy RM, Fouladdel S, Zhao L, Ishikawa MK, Grabauskiene S, Zhang Z, Lin J, Chang AC, Carrott P et al (2017) Poor prognosis indicated by venous circulating tumor cell clusters in early-stage lung cancers. Cancer Res 77:5194–5206

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Larsson AM, Jansson S, Bendahl PO, Levin Tykjaer Jörgensen C, Loman N, Graffman C, Lundgren L, Aaltonen K, Rydén L (2018) Longitudinal enumeration and cluster evaluation of circulating tumor cells improve prognostication for patients with newly diagnosed metastatic breast cancer in a prospective observational trial. Breast Cancer Res 20:1–14

    Google Scholar 

  110. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–1038

    PubMed  PubMed Central  Google Scholar 

  111. Bastos DA, Antonarakis ES (2018) CTC-derived AR-V7 detection as a prognostic and predictive biomarker in advanced prostate cancer. Expert Rev Mol Diagn 18:155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, Peng W, Sandhu SK, Olmos D, Riisnaes R, McCormack R, Burzykowski T, Kheoh T, Fleisher M, Buyse M, de Bono JS (2015) Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 33:1348–1355

    CAS  Google Scholar 

  113. Heller G, McCormack R, Kheoh T, Molina A, Smith MR, Dreicer R, Saad F, de Wit R, Aftab DT, Hirmand M, Limon A, Fizazi K, Fleisher M, de Bono JS, Scher HI (2018) Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: a comparison with prostate-specific antigen across five randomized phase III clinical trials. J Clin Oncol Off J Am Soc Clin Oncol 36:572–580

    CAS  Google Scholar 

  114. Oxnard GR, West HJ, King JC (2019) Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA Oncol. https://www.ncbi.nlm.nih.gov/pubmed/31647499

  115. Guan X, Ma F, Li C, Wu S, Hu S, Huang J, Sun X, Wang J, Luo Y, Cai R et al (2019) The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial-mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer. Cancer Commun 39:1–10

    Google Scholar 

  116. Gorges TM, Stein A, Quidde J, Hauch S, Röck K, Riethdorf S, Joosse SA, Pantel K (2016) Improved detection of circulating tumor cells in metastatic colorectal cancer by the combination of the cell Search® system and the AdnaTest®. PLoS One 11:1–13

    Google Scholar 

  117. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10:374–394

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lu YJ, Wang P, Peng J, Wang X, Zhu YW, Shen N (2017) Meta-analysis reveals the prognostic value of circulating tumour cells detected in the peripheral blood in patients with non-metastatic colorectal cancer. Sci Rep 7:1–9

    Google Scholar 

  119. Tan Y, Wu H (2018) The significant prognostic value of circulating tumor cells in colorectal cancer: a systematic review and meta-analysis. Curr Probl Cancer 42:95–106

    PubMed  Google Scholar 

  120. Yang C, Zou K, Zheng L, Xiong B (2017) Prognostic and clinicopathological significance of circulating tumor cells detected by rt-pcr in non-metastatic colorectal cancer: a meta-analysis and systematic review. BMC Cancer 17:725

    PubMed  PubMed Central  Google Scholar 

  121. Huang X, Gao P, Song Y, Sun J, Chen X, Zhao J, Xu H, Wang Z (2015) Meta-analysis of the prognostic value of circulating tumor cells detected with the cell search system in colorectal cancer. BMC Cancer 15:202

    PubMed  PubMed Central  Google Scholar 

  122. Bidard FC, Michiels S, Riethdorf S, Mueller V, Esserman LJ, Lucci A, Naume B, Horiguchi J, Gisbert-Criado R, Sleijfer S et al (2018) Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. J Natl Cancer Inst 110:560–567

    PubMed  Google Scholar 

  123. Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, Liu J, Pantel K (2012) Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 18:5701–5710

    PubMed  Google Scholar 

  124. Ma XL, Xiao ZL, Liu L, Liu XX, Nie W, Li P, Chen NY, Wei YQ (2012) Meta-analysis of circulating tumor cells as a prognostic marker in lung cancer. Asian Pac J Cancer Prev 13:1137–1144

    PubMed  Google Scholar 

  125. Wu ZX, Liu Z, Jiang HL, Pan HM, Han WD (2016) Circulating tumor cells predict survival benefit from chemotherapy in patients with lung cancer. Oncotarget 7:67586–67596

    PubMed  PubMed Central  Google Scholar 

  126. Stephenson D, Nahm C, Chua T, Gill A, Mittal A, de Reuver P, Samra J (2017) Circulating and disseminated tumor cells in pancreatic cancer and their role in patient prognosis: a systematic review and meta-analysis. Oncotarget 8:107223–107236

    PubMed  PubMed Central  Google Scholar 

  127. Ma XL, Xiao ZL, Li X, Wang F, Zhang J, Zhou R, Wang J, Liu L (2014) The prognostic role of circulating tumor cells and disseminated tumor cells in patients with prostate cancer: a systematic review and meta-analysis. Tumor Biol 35:5551–5560

    CAS  Google Scholar 

  128. Zheng Y, Zhang C, Wu J, Cheng G, Yang H, Hua L, Wang Z (2016) Prognostic value of circulating tumor cells in castration resistant prostate cancer: a meta-analysis. Urol J 13:2881–2888

    PubMed  Google Scholar 

  129. Zou K, Yang S, Zheng L, Wang S, Xiong B (2016) Prognostic role of the circulating tumor cells detected by cytological methods in gastric cancer: a meta-analysis. Biomed Res Int. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098053/

  130. Hou J, Zou K, Yang C, Leng X, Xu Y (2018) Clinicopathological and prognostic significance of circulating tumor cells in patients with esophageal cancer: a meta-analysis. Onco Targets Ther 11:8053–8061

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cho J, Lee GJ, Kim H, Moon UY, Kim M, Kim S, Baek K, Jeong H (2018) Differential impact of circulating tumor cells on disease recurrence and survivals in patients with head and neck squamous cell carcinomas: an updated meta-analysis. PLoS One 13:1–11

    CAS  Google Scholar 

  132. Stroun M, Maurice P, Vasioukhin V et al (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168

    CAS  PubMed  Google Scholar 

  133. Grivas P, Lalani AKA, Pond GR, Nagy RJ, Faltas B, Agarwal N, Gupta SV, Drakaki A, Vaishampayan UN, Wang J et al (2019) Circulating tumor DNA alterations in advanced urothelial carcinoma and association with clinical outcomes: a pilot study. Eur Urol Oncol. https://doi.org/10.1016/j.euo.2019.02.004

    Article  PubMed  Google Scholar 

  134. Giannopoulou L, Mastoraki S, Buderath P, Strati A, Pavlakis K, Kasimir-Bauer S, Lianidou ES (2018) ESR1 methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer. Gynecol Oncol 150:355–360

    CAS  PubMed  Google Scholar 

  135. Sonpavde G, Agarwal N, Pond GR, Nagy RJ, Nussenzveig RH, Hahn AW, Sartor O, Gourdin TS, Nandagopal L, Ledet EM et al (2019) Circulating tumor DNA alterations in patients with metastatic castration-resistant prostate cancer. Cancer 125:1459–1469

    CAS  PubMed  Google Scholar 

  136. Tzanikou E, Markou A, Politaki E, Koutsopoulos A, Psyrri A, Mavroudis D, Georgoulias V, Lianidou E (2019) PIK3CA hotspot mutations in circulating tumor cells and paired circulating tumor DNA in breast cancer: a direct comparison study. Mol Oncol 13:2515–2530

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Barata PC, Koshkin VS, Funchain P, Sohal D, Pritchard A, Klek S, Adamowicz T, Gopalakrishnan D, Garcia J, Rini B, Grivas P (2017) Next-generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in patients with advanced urothelial cancer: a pilot assessment of concordance. Ann Oncol 28:2458–2463

    CAS  PubMed  Google Scholar 

  138. Agarwal N, Pal SK, Hahn AW, Nussenzveig RH, Pond GR, Gupta SV, Wang J, Bilen MA, Naik G, Ghatalia P, Hoimes CJ, Gopalakrishnan D, Barata PC, Drakaki A, Faltas BM, Kiedrowski LA, Lanman RB, Nagy RJ, Vogelzang NJ, Boucher KM, Vaishampayan UN, Sonpavde G, Grivas P (2018) Characterization of metastatic urothelial carcinoma via comprehensive genomic profiling of circulating tumor DNA. Cancer 124:2115–2124

    CAS  PubMed  Google Scholar 

  139. Sina AAI, Carrascosa LG, Trau M (2019) DNA methylation-based point-of-care cancer detection: challenges and possibilities. Trends Mol Med 25:955–966

    CAS  PubMed  Google Scholar 

  140. Mamdouhi T, Twomey JD, McSweeney KM, Zhang B (2019) Fugitives on the run: circulating tumor cells (CTCs) in metastatic diseases. Cancer Metastasis Rev 38:297–305

    PubMed  PubMed Central  Google Scholar 

  141. Ye Z, Wang C, Wan S, Mu Z, Zhang Z, Abu-Khalaf MM, Fellin FM, Silver DP, Neupane M, Jaslow RJ, Bhattacharya S, Tsangaris TN, Chervoneva I, Berger A, Austin L, Palazzo JP, Myers RE, Pancholy N, Toorkey D, Yao K, Krall M, Li X, Chen X, Fu X, Xing J, Hou L, Wei Q, Li B, Cristofanilli M, Yang H (2019) Association of clinical outcomes in metastatic breast cancer patients with circulating tumour cell and circulating cell-free DNA. Eur J Cancer 106:133–143

    CAS  PubMed  Google Scholar 

  142. Punnoose EA, Atwal S, Liu W, Raja R, Fine BM, Hughes BG, Hicks RJ, Hampton GM, Amler LC, Pirzkall A, Lackner MR (2012) Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 18:2391–2401

    CAS  PubMed  Google Scholar 

  143. Lampignano R, Neumann MHD, Weber S, Kloten V, Herdean A, Voss T, Groelz D, Babayan A, Tibbesma M, Schlumpberger M et al (2019) Multicenter evaluation of circulating cell-free DNA extraction and downstream analyses for the development of standardized (Pre)analytical work flows. Clin Chem 66:1–12

    Google Scholar 

  144. Mouliere F, Chandrananda D, Piskorz AM, Elizabeth K, Morris J, Ahlborn LB, Mair R, Marass F, Heider K, Wan JCM et al (2018) Europe PMC funders group enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med 10:1–28

    Google Scholar 

  145. Cohen JD, Li L, Wang Y, Thoburn C, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359:926–930

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Groot VP, Mosier S, Javed AA, Teinor JA, Gemenetzis G, Ding D, Haley LM, Yu J, Burkhart RA, Hasanain A et al (2019) Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res 25:4973–4984

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, Anagnostou V, Fiksel J, Cristiano S, Papp E, Speir S et al (2019) Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 9:1–25

    Google Scholar 

  148. Wang Y, Li L, Douville C, Cohen JD, Yen TT, Kinde I, Sundfelt K, Kjær SK, Hruban RH, Shih IM et al (2018) Evaluation of liquid from the papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Obstet Gynecol Surv 73:463–464

    Google Scholar 

  149. Rodriguez Pena MDC, Springer SU, Taheri D, Li L, Tregnago AC, Eich ML, Eltoum IEA, VandenBussche CJ, Papadopoulos N, Kinzler KW et al (2019) Performance of novel non-invasive urine assay UroSEEK in cohorts of equivocal urine cytology. Virchows Arch. https://doi.org/10.1007/s00428-019-02654-1

    Article  PubMed  Google Scholar 

  150. Kennedy SR, Zhang Y, Risques RA (2019) Cancer-associated mutations but no cancer: insights into the early steps of carcinogenesis and implications for early cancer detection. Trends Cancer 5:531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Luoh S, Flaherty KT (2018) When tissue is no longer the issue: tissue-agnostic cancer therapy comes of age. Ann Intern Med 169:233–239

    PubMed  Google Scholar 

  152. Hierro C, Matos I, Martin-Liberal J, Ochoa de Olza M, Garralda E (2019) Agnostic-histology approval of new drugs in oncology: are we already there? Clin Cancer Res 25:3210–3219

    PubMed  Google Scholar 

  153. Mullard A (2019) FDA notches up third tissue-agnostic cancer approval. Nat Rev Drug Discov 18:737

    PubMed  Google Scholar 

  154. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Markou A, Zavridou M, Sourvinou I, Yousef G, Kounelis S, Malamos N (2016) Direct comparison of metastasis-related miRNAs expression levels in circulating tumor cells, corresponding plasma, and primary tumors of breast cancer patients. Clin Chem 62:1002–1011

    CAS  PubMed  Google Scholar 

  156. Economopoulou P, Koutsodontis G, Strati A, Kirodimos E, Giotakis E, Maragoudakis P, Prikas C, Papadimitriou N, Perisanidis C, Gagari E et al (2019) Surrogates of immunologic cell death (ICD) and chemoradiotherapy outcomes in head and neck squamous cell carcinoma (HNSCC). Oral Oncol 94:93–100

    PubMed  Google Scholar 

  157. Sutton TL, Walker BS, Wong MH (2019) Circulating hybrid cells join the fray of circulating cellular biomarkers. Cell Mol Gastroenterol Hepatol 8:595–607

    PubMed  PubMed Central  Google Scholar 

  158. Mentis AFA, Dardiotis E, Romas NA, Papavassiliou AG (2019) PIWI family proteins as prognostic markers in cancer: a systematic review and meta-analysis. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03403-y

    Article  PubMed  Google Scholar 

  159. Neumann MHD, Bender S, Krahn T, Schlange T (2018) ctDNA and CTCs in liquid biopsy—current status and where we need to progress. Comput Struct Biotechnol J 16:190–195

    PubMed  PubMed Central  Google Scholar 

  160. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang H, Han J, Kang B, Burgess R, Zhang Z (2012) Human histone acetyltransferase 1 protein preferentially acetylates H4 histone molecules in H3.1-H4 over H3.3-H4. J Biol Chem 287:6573–6581

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen SØ, Medina JE, Hruban C, White JR et al (2019) Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570:385–389

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Andrew D, Akbani R et al (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173:291–304

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Priestley P, Baber J, Lolkema MP, Steeghs N, De Bruijn E, Shale C, Duyvesteyn K et al (2019) Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575:210–216

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Parikh SA, Kay NE, Shanafelt TD (2014) How we treat Richter syndrome. Blood 123:1647–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Yeh P, Hunter T, Sinha D, Ftouni S, Wallach E, Jiang D, Chan YC, Wong SQ, Silva MJ, Vedururu R et al (2017) Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat Commun 8:1–7

    CAS  Google Scholar 

  167. Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, Zheng Y, Skakodub A, Mehta SA, Campos C et al (2019) Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565:654–658

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jones PS, Yekula A, Lansbury E, Small JL, Ayinon C, Mordecai S, Hochberg FH, Tigges J, Delcuze B, Charest A et al (2019) Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma. EBioMedicine 48:23–35

    PubMed  PubMed Central  Google Scholar 

  169. Sindeeva OA, Verkhovskii RA, Sarimollaoglu M, Afanaseva GA, Fedonnikov AS, Osintsev EY, Kurochkina EN, Gorin DA, Deyev SM, Zharov VP et al (2019) New frontiers in diagnosis and therapy of circulating tumor markers in cerebrospinal fluid in vitro and in vivo. Cells 8:1195

    CAS  PubMed Central  Google Scholar 

  170. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J (2017) Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Investig 127:3210–3219

    PubMed  PubMed Central  Google Scholar 

  171. Harrison IF, Siow B, Akilo AB, Evans PG, Ismail O, Ohene Y, Nahavandi P, Thomas DL, Lythgoe MF, Wells JA (2018) Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. Elife 7:1–14

    Google Scholar 

  172. Alunni-Fabbroni M, Müller V, Fehm T, Janni W, Rack B (2014) Monitoring in metastatic breast cancer: is imaging outdated in the era of circulating tumor cells? Breast Care 9:16–21

    PubMed  PubMed Central  Google Scholar 

  173. Liu J, Dang H, Wang XW (2018) The significance of intertumor and intratumor heterogeneity in liver cancer. Exp Mol Med 50:e416

    PubMed  PubMed Central  Google Scholar 

  174. Mentis AFA, Boziki M, Grigoriadis N, Papavassiliou AG (2019) Helicobacter pylori infection and gastric cancer biology: tempering a double-edged sword. Cell Mol Life Sci 76:2477–2486

    CAS  PubMed  Google Scholar 

  175. El-deiry WS, Taylor B, Neal JW (2017) Tumor evolution, heterogeneity, and therapy for our patients with advanced cancer: how far have we come? Am Soc Clin Oncol Educ Book 37:e8–e15

    PubMed  Google Scholar 

  176. Rossi E, Zamarchi R (2019) Single-cell analysis of circulating tumor cells: how far have we come in the omics era? Front Genet 10:1–12

    Google Scholar 

  177. Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70:232–241

    PubMed  Google Scholar 

  178. Hesketh RL, Zhu AX, Oklu R (2015) Hepatocellular carcinoma: can circulating tumor cells and radiogenomics deliver personalized care? Am J Clin Oncol Cancer Clin Trials 38:431–436

    CAS  Google Scholar 

  179. Nair VS, Keu KV, Luttgen MS, Kolatkar A, Vasanawala M, Kuschner W, Bethel K, Iagaru AH, Hoh C, Shrager JB et al (2013) An observational study of circulating tumor cells and 18F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer. PLoS One 8:e67733

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Yu JQ, Cristofanilli M (2011) Circulating tumor cells and PET. J Nucl Med 52:1501–1504

    PubMed  Google Scholar 

  181. Tabouret-Viaud C, Botsikas D, Delattre BMA, Mainta I, Amzalag G, Rager O, Vinh-Hung V, Miralbell R, Ratib O (2015) PET/MR in breast cancer. Semin Nucl Med 45:304–321

    PubMed  Google Scholar 

  182. Ehman EC, Johnson GB, Villanueva-meyer JE, Cha S, Leynes AP, Eric P, Larson HTA (2017) Mechanism of oxidative conversion of Amplex Red to resorufin: pulse radiolysis and enzymatic studies. Free Radic Biol Med 46:1247–1262

    Google Scholar 

  183. Bettigole C (2013) The thousand-dollar Pap smear. N Engl J Med 369:1486–1487

    CAS  PubMed  Google Scholar 

  184. Marrinucci D, Bethel K, Bruce RH, Curry DN, Hsieh B, Humphrey M, Krivacic RT, Kroener J, Kroener L, Ladanyi A et al (2007) Case study of the morphologic variation of circulating tumor cells. Hum Pathol 38:514–519

    PubMed  Google Scholar 

  185. Marrinucci D, Bethel K, Lazar D, Fisher J, Huynh E, Clark P, Bruce R, Nieva J, Kuhn P (2010) Cytomorphology of circulating colorectal tumor cells: a small case series. J Oncol 2010:1–7

    Google Scholar 

  186. Araújo FHD, Silva RRV, Ushizima DM, Rezende MT, Carneiro CM, Campos Bianchi AG, Medeiros FNS (2019) Deep learning for cell image segmentation and ranking. Comput Med Imaging Graph 72:13–21

    PubMed  Google Scholar 

  187. Lu Z, Carneiro G, Bradley AP, Ushizima D, Nosrati MS, Bianchi AGC, Carneiro CM, Hamarneh G (2017) Evaluation of three algorithms for the segmentation of overlapping cervical cells. IEEE J Biomed Heal Inform 21:441–450

    Google Scholar 

  188. Mozdiak E, Wicaksono AN, Covington JA, Arasaradnam RP (2019) Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: early results from a single-centre bowel screening population (UK BCSP). Tech Coloproctol 23:343–351

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Abderrahman B (2019) Exhaled breath biopsy: a new cancer detection paradigm. Future Oncol 15:1679–1682

    CAS  PubMed  Google Scholar 

  190. Farhadi A, Ho GH, Sawyer DP, Bourdeau RW, Shapiro MG (2019) Ultrasound imaging of gene expression in mammalian cells. Science 365:1469–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17

    CAS  PubMed  Google Scholar 

  192. Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A, Loupakis F, Birner P, Preusser M, Lenz HJ, Curtis C (2019) Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet 51:1113–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Mentis AFA, Kararizou E (2010) Epithelial-mesenchymal transition and cancerogenesis. Iatriki 8:379–385

    Google Scholar 

  194. Parkins KM, Dubois VP, Kelly JJ, Chen Y, Foster PJ, Ronald JA (2019) Engineering “self-homing” circulating tumour cells as novel cancer theranostics. bioRxiv. https://doi.org/10.1101/746685v1

    Article  Google Scholar 

  195. Akolkar D, Patil D, Crook T, Limaye S, Page R, Datta V, Patil R, Sims C, Ranade A, Fulmali P et al (2019). Circulating ensembles of tumor associated cells: a redoubtable new systemic hallmark of cancer. Int J Cancer. https://www.ncbi.nlm.nih.gov/pubmed/31785151

  196. Baron CS, van Oudenaarden A (2019) Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol 20:753–765

    CAS  PubMed  Google Scholar 

  197. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, Mitchell TJ, Rubanova Y, Anur P, Yu K, Tarabichi M, Deshwar A, Wintersinger J, Kleinheinz K, Vázquez-García I, Haase K, Jerman L, Sengupta S, Macintyre G, Malikic S, Donmez N, Livitz DG, Cmero M, Demeulemeester J, Schumacher S, Fan Y, Yao X, Lee J, Schlesner M, Boutros PC, Bowtell DD, Zhu H, Getz G, Imielinski M, Beroukhim R, Sahinalp SC, Ji Y, Peifer M, Markowetz F, Mustonen V, Yuan K, Wang W, Morris QD, PCAWG Evolution & Heterogeneity Working Group, Spellman PT, Wedge DC, Van Loo P, PCAWG Consortium (2020) The evolutionary history of 2658 cancers. Nature 578:122–128

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Jiao W, Atwal G, Polak P, Karlic R, Cuppen E, PCAWG Tumor Subtypes, and Clinical Translation Working Group, Danyi A, de Ridder J, van Herpen C, Lolkema MP, Steeghs N, Getz G, Morris Q, Stein LD, PCAWG Consortium (2020) A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nat Commun 11:728

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Milanez-Almeida P, Martins AJ, Germain RN, Tsang JS (2020) Cancer prognosis with shallow tumor RNA sequencing. Nat Med 26:188–192

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was not supported by any funding or grant scheme. AFAM is highly indebted to Anna S. Gkika for her continuous support during this study. AFAM would like to dedicate this study to the memory of late Prof. George Vlastos, M.D., Ph.D., who served as Head of the Senology Unit, University Hospitals of Geneva, Switzerland. Prof. Vlastos provided the initial inspiration to AFAM to work on this topic.

Author information

Authors and Affiliations

Authors

Contributions

AFAM, PG, ED, NAR, and AGP conceived the study. AFAM, PG, and ED performed literature search. NAR provided critical clinical input to this study. AGP supervised this study. AFAM, PG, and ED prepared first draft. NAR and AGP revised the manuscript for important intellectual content. AFAM, PG, ED, NAR, and AGP approved the final version of the manuscript.

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Ethics declarations

Conflict of interest

AFAM, ED, NAR, and AGP report no financial or other conflicts of interest. PDG has provided unrelated consulting/advisory role for the following entities in the last 2 years: Merck, Bristol-Myers Squibb, AstraZeneca, Clovis Oncology, EMD Serono, Seattle Genetics, Foundation Medicine, Driver, Pfizer, QED Therapeutics, Heron Therapeutics, Janssen, Bayer, Genzyme, Mirati Therapeutics, Exelixis, Roche, GlaxoSmithKline. Also, he has received Research Funding at his Institution from the following entities: Pfizer, Clovis Oncology, Bavarian Nordic, Immunomedics, Bristol-Myers Squibb, and Debiopharm Group.

Ethical guidelines

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentis, AF.A., Grivas, P.D., Dardiotis, E. et al. Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal. Cell. Mol. Life Sci. 77, 3671–3690 (2020). https://doi.org/10.1007/s00018-020-03529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03529-4

Keywords

Navigation