Skip to main content
Log in

Mechanisms of larynx and vocal fold development and pathogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The larynx and vocal folds sit at the crossroad between digestive and respiratory tracts and fulfill multiple functions related to breathing, protection and phonation. They develop at the head and trunk interface through a sequence of morphogenetic events that require precise temporo-spatial coordination. We are beginning to understand some of the molecular and cellular mechanisms that underlie critical processes such as specification of the laryngeal field, epithelial lamina formation and recanalization as well as the development and differentiation of mesenchymal cell populations. Nevertheless, many gaps remain in our knowledge, the filling of which is essential for understanding congenital laryngeal disorders and the evaluation and treatment approaches in human patients. This review highlights recent advances in our understanding of the laryngeal embryogenesis. Proposed genes and signaling pathways that are critical for the laryngeal development have a potential to be harnessed in the field of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmad SM, Soliman AMS (2007) Congenital anomalies of the larynx. Otolaryngol Clin N Am 40(1):177–191. https://doi.org/10.1016/j.otc.2006.10.004

    Article  Google Scholar 

  2. Akiyama H et al (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16(21):2813–2828. https://doi.org/10.1101/gad.1017802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andreatta RD et al (2002) Mucosal afferents mediate laryngeal adductor responses in the cat. J Appl Physiol 93(5):1622–1629. https://doi.org/10.1152/japplphysiol.00417.2002

    Article  PubMed  Google Scholar 

  4. Arsić D et al (2003) Differences in the levels of sonic hedgehog protein during early foregut development caused by exposure to Adriamycin give clues to the role of the Shh gene in oesophageal atresia. Pediatr Surg Int 19(6):463–466. https://doi.org/10.1007/s00383-003-0959-8

    Article  PubMed  Google Scholar 

  5. Aubin J et al (1997) Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192(2):432–445. https://doi.org/10.1006/dbio.1997.8746

    Article  CAS  PubMed  Google Scholar 

  6. Ban MJ et al (2017) The efficacy of fibroblast growth factor for the treatment of chronic vocal fold scarring: from animal model to clinical application. Clin Exp Otorhinolaryngol 10(4):349–356. https://doi.org/10.21053/ceo.2016.00941

    Article  CAS  PubMed  Google Scholar 

  7. Bedwell J, Zalzal G (2016) Laryngomalacia. Semin Pediatr Surg 15(1):119–122

    Article  Google Scholar 

  8. Bell DM et al (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16(2):174–178. https://doi.org/10.1038/ng0697-174

    Article  CAS  PubMed  Google Scholar 

  9. Bell SM et al (2008) R-spondin 2 is required for normal laryngeal-tracheal, lung and limb morphogenesis. Development 135(6):1049–1058. https://doi.org/10.1242/dev.013359

    Article  CAS  PubMed  Google Scholar 

  10. Bergrin M et al (2006) Three-dimensional compartmentalization of myosin heavy chain and myosin light chain isoforms in dog thyroarytenoid muscle. Am J Physiol Cell Physiol 290(5):1446–1458. https://doi.org/10.1152/ajpcell.00323.2005

    Article  CAS  Google Scholar 

  11. Bhattacharyya N (2015) The prevalence of pediatric voice and swallowing problems in the United States. Laryngoscope 125(3):746–750. https://doi.org/10.1002/lary.24931

    Article  PubMed  Google Scholar 

  12. Bless DM et al (2004) Growth factor therapy for vocal fold scarring in a canine model. Ann Otol Rhinol Laryngol 113(10):777–785. https://doi.org/10.1177/000348940411301002

    Article  PubMed  Google Scholar 

  13. Bose J (2002) Pallister–Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 11(9):1129–1135. https://doi.org/10.1093/hmg/11.9.1129

    Article  CAS  PubMed  Google Scholar 

  14. Chai Y et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679

    CAS  PubMed  Google Scholar 

  15. Chiang T et al (2014) ‘Surgical management of type I and II laryngeal cleft in the pediatric population. Int J Pediatr Otorhinolaryngol 78(12):2244–2249. https://doi.org/10.1016/j.ijporl.2014.10.023

    Article  PubMed  Google Scholar 

  16. Chieffo C et al (1997) Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics 43(3):267–277. https://doi.org/10.1006/geno.1997.4829

    Article  CAS  PubMed  Google Scholar 

  17. Connor NP et al (2002) Neuromuscular junction changes in aged rat thyroarytenoid muscle. Ann Otol Rhinol Laryngol 111(7):579–586. https://doi.org/10.1177/000348940211100703

    Article  PubMed  Google Scholar 

  18. Daya H et al (2000) Pediatric vocal fold paralysis: a long-term retrospective study. Arch Otolaryngol Head Neck Surg 126(1):21–25. https://doi.org/10.1001/archotol.126.1.21

    Article  CAS  PubMed  Google Scholar 

  19. Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964

    Article  CAS  Google Scholar 

  20. Dravis C, Henkemeyer M (2011) Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues. Dev Biol 355(1):138–151. https://doi.org/10.1016/j.ydbio.2011.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebert B et al (2018) Congenital and iatrogenic laryngeal and vocal abnormalities in patients with 22q11.2 deletion. Int J Pediatr Otorhinolaryngol 109(March):17–20. https://doi.org/10.1016/j.ijporl.2018.03.006

    Article  PubMed  Google Scholar 

  22. Elluru RG, Thompson F, Reece A (2009) Fibroblast growth factor 18 gives growth and directional cues to airway cartilage. Laryngoscope 119(6):1153–1165. https://doi.org/10.1002/lary.20157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elluru RG, Whitsett JA (2014) Potential role of Sox9 in patterning tracheal cartilage ring formation in an embryonic mouse model Ravindhra. Arch Otolaryngol Head Neck Surg 130(6):732–736. https://doi.org/10.1038/jid.2014.371

    Article  CAS  Google Scholar 

  24. Evans DJR, Noden DM (2006) Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 235(5):1310–1325. https://doi.org/10.1002/dvdy.20663

    Article  PubMed  Google Scholar 

  25. Fokstuen S, Bottani A, Medeiros PF, Antonarakis SE, Stoll CSA (1997) Laryngeal atresia type III (glottic web) with 22q11.2 microdeletion: report of three patients. Am J Med Genet 70(2):130–133

    Article  CAS  Google Scholar 

  26. França MM et al (2010) Novel heterozygous nonsense GLI2 mutations in patients with hypopituitarism and ectopic posterior pituitary lobe without holoprosencephaly. J Clin Endocrinol Metab 95(11):384–391. https://doi.org/10.1210/jc.2010-1050

    Article  Google Scholar 

  27. Franco B, Thauvin-Robinet C (2016) Update on oral-facial-digital syndromes (OFDS). Cilia BioMed Central 5(1):1–11. https://doi.org/10.1186/s13630-016-0034-4

    Article  CAS  Google Scholar 

  28. Frisdal A, Trainor PA (2014) Development and evolution of the pharyngeal apparatus. Wiley Interdiscip Rev Dev Biol 3(16):403–418. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garcia-Martinez V, Alvarez IS, Schoenwolf GC (1993) Locations of the ectodermal and nonectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J Exp Zool. https://doi.org/10.1002/jez.1402670409

    Article  PubMed  Google Scholar 

  30. Goding GS, Al-Sharif KI, McLoon LK (2005) Myonuclear addition to uninjured laryngeal myofibers in adult rabbits. Ann Otol Rhinol Laryngol 114(7):552–557. https://doi.org/10.1177/000348940511400711

    Article  PubMed  Google Scholar 

  31. Goss AM et al (2009) ‘Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17(2):290–298. https://doi.org/10.1016/j.devcel.2009.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harris-Johnson KS et al (2009) beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci USA 106(38):16287–16292. https://doi.org/10.1073/pnas.0902274106

    Article  PubMed  Google Scholar 

  33. Hartnick CJ, Cotton RT (2000) Congenital laryngeal anomalies laryngeal atresia, stenosis, webs, and clefts. Otolaryngol Clin N Am 33:6. https://doi.org/10.1016/S0030-6665

    Article  Google Scholar 

  34. Hayes LL et al (2008) Laryngeal and tracheal anomalies in an infant with oral-facial-digital syndrome type VI (Váradi-Papp): report of a transitional type. Pediatr Radiol 38(9):994–998. https://doi.org/10.1007/s00247-008-0877-y

    Article  PubMed  Google Scholar 

  35. Henick DH (1993) Three-dimensional analysis of murine laryngeal development. Ann Otol Rhinol Laryngol Supplement 159:3–24

    Article  Google Scholar 

  36. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development (Cambridge) 141(3):502–513. https://doi.org/10.1242/dev.098186

    Article  CAS  Google Scholar 

  37. Hirano M (1974) Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica Logopaed 26(2):89–94. https://doi.org/10.1159/000263771

    Article  CAS  Google Scholar 

  38. Van Houtte E et al (2010) The prevalence of laryngeal pathology in a treatment-seeking population with dysphonia. Laryngoscope 120(2):306–312. https://doi.org/10.1002/lary.20696

    Article  PubMed  Google Scholar 

  39. Hsu AK et al (2015) Familial congenital bilateral vocal fold paralysis: a novel gene translocation. Int J Pediatr Otorhinolaryngol 79(3):323–327. https://doi.org/10.1016/j.ijporl.2014.12.009

    Article  PubMed  Google Scholar 

  40. Huang R et al (1997) The fate of the first avian somite. Anat Embryol 195(5):435–449. https://doi.org/10.1007/s004290050063

    Article  CAS  PubMed  Google Scholar 

  41. Huh SH, Ornitz DM (2010) β-Catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1. Development 137(7):1137–1147. https://doi.org/10.1242/dev.045534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inagi K, Schultz E, Ford CN (1998) An anatomic study of the rat larynx: establishing the rat model for neuromuscular function. Otolaryngol Head Neck Surg 118(1):74–81. https://doi.org/10.1016/S0194-5998(98)70378-X

    Article  CAS  PubMed  Google Scholar 

  43. Kumai Y (2019) Pathophysiology of fibrosis in the vocal fold: current research, future treatment strategies, and obstacles to restoring vocal fold pliability. Int J Mol Sci 20:10. https://doi.org/10.3390/ijms20102551

    Article  CAS  Google Scholar 

  44. Kusak B et al (2017) Types of laryngomalacia in children: interrelationship between clinical course and comorbid conditions. Eur Arch Otorhinolaryngol 274(3):1577–1583. https://doi.org/10.1007/s00405-016-4334-5

    Article  PubMed  Google Scholar 

  45. Levendoski EE, Leydon C, Thibeault SL (2014) Vocal fold epithelial barrier in health and injury: a research review. J Speech Lang Hear Res 57(3):1679–1691. https://doi.org/10.1044/2014

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li L et al (2016) Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 108:91–110. https://doi.org/10.1016/j.biomaterials.2016.08.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li S, Darwin JP (1995) Transgenic mice with targeted for collagen 11 develop a skeleton with membranous and periosteal bone but no endochondral bone, pp 2821–2830

  48. Liberty G et al (2013) The fetal larynx and pharynx: structure and development on two- and three-dimensional ultrasound. Ultrasound Obstet Gynecol 42(2):140–148. https://doi.org/10.1002/uog.12358

    Article  CAS  PubMed  Google Scholar 

  49. Lipson AH et al (1991) Velocardiofacial (Shprintzen) syndrome: an important syndrome for the dysmorphologist to recognise. J Med Genet 28(9):596–604. https://doi.org/10.1136/jmg.28.9.596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Litingtung Y et al (1998) ‘Sonic hedgehog is essential to foregut development. Nat Genet 20(1):58–61. https://doi.org/10.1038/1717

    Article  CAS  PubMed  Google Scholar 

  51. Lungova V et al (2015) Ontogeny of the mouse vocal fold epithelium. Dev Biol 399:2. https://doi.org/10.1016/j.ydbio.2014.12.037

    Article  CAS  Google Scholar 

  52. Lungova V et al (2018) β-Catenin signaling is essential for mammalian larynx recanalization and the establishment of vocal fold progenitor cells. Dev (Cambridge) 145:4. https://doi.org/10.1242/dev.157677

    Article  CAS  Google Scholar 

  53. Lungova V et al (2019) Human induced pluripotent stem cell-derived vocal fold mucosa mimics development and responses to smoke exposure. Nat Commun. https://doi.org/10.1038/s41467-019-12069-w

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lüthe L, Häusler U, Jürgens U (2000) Neuronal activity in the medulla oblongata during vocalization. A single-unit recording study in the squirrel monkey. Behav Brain Res 116(2):197–210. https://doi.org/10.1016/S0166-4328(00)00272-2

    Article  PubMed  Google Scholar 

  55. Mahrt E et al (2016) Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets. Curr Biol 26(19):R880–R881. https://doi.org/10.1016/j.cub.2016.08.032

    Article  CAS  PubMed  Google Scholar 

  56. Manley NR, Capecchi MR (1997) Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev Biol 192(2):274–288. https://doi.org/10.1006/dbio.1997.8765

    Article  CAS  PubMed  Google Scholar 

  57. Marques MJ et al (2007) Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 35(3):349–353. https://doi.org/10.1002/mus.20697

    Article  PubMed  Google Scholar 

  58. Marshall H, Morrison A, Studer M, Pöpperl HKR (1996) Retinoids and Hox genes. FASEB 10(9):969–978

    Article  CAS  Google Scholar 

  59. Miri AK (2014) Mechanical characterization of vocal fold tissue: a review study. J Voice 28(6):657–667. https://doi.org/10.1016/j.jvoice.2014.03.001

    Article  PubMed  Google Scholar 

  60. Mori-Akiyama Y et al (2003) Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci USA 100(16):9360–9365. https://doi.org/10.1073/pnas.1631288100

    Article  CAS  PubMed  Google Scholar 

  61. Morrisey EE, Hogan BLM (2010) ‘Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18(1):8–23. https://doi.org/10.1016/j.devcel.2009.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morrow BE et al (2018) Molecular genetics of 22q11.2 deletion syndrome. Am J Med Genet Part A 176(10):2070–2081. https://doi.org/10.1002/ajmg.a.40504

    Article  CAS  PubMed  Google Scholar 

  63. Neilan RE et al (2012) Characterization of the larynx in Ephrin-B2 knockout mice. Arch Otolaryngol Head Neck Surg 138(10):969. https://doi.org/10.1001/archotol.2013.109

    Article  PubMed  Google Scholar 

  64. Niederreither K et al (2003) The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130(11):2525–2534. https://doi.org/10.1242/dev.00463

    Article  CAS  PubMed  Google Scholar 

  65. Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168(3):257–276. https://doi.org/10.1002/aja.1001680302

    Article  CAS  PubMed  Google Scholar 

  66. Noden DM (1986) Patterning of avian craniofacial muscles. Dev Biol. https://doi.org/10.1016/0012-1606(86)90138-7

    Article  PubMed  Google Scholar 

  67. Noden DM et al (1999) Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev Dyn 216(2):96–112. https://doi.org/10.1002/(SICI)1097-0177(199910)216:2%3c96:AID-DVDY2%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  68. Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207:575–601

    Article  Google Scholar 

  69. Ondrey F, Griffith A, Van Waes C, Rudy S, Peters K, McCullagh L, B. L. (2000) Asymptomatic laryngeal malformations are common in patients with Pallister–Hall syndrome. Am J Med Genet 94(1):64–67

    Article  CAS  Google Scholar 

  70. Périé S et al (2000) Myosin heavy chain expression in human laryngeal muscle fibers: a biochemical study. Ann Otol Rhinol Laryngol 109(2):216–220. https://doi.org/10.1177/000348940010900218

    Article  PubMed  Google Scholar 

  71. Piekarski N, Olsson L (2007) Muscular derivatives of the cranialmost somites revealed by long-term fate mapping in the Mexican axolotl (Ambystoma mexicanum). Evol Dev 9(6):566–578. https://doi.org/10.1111/j.1525-142X.2007.00197.x

    Article  PubMed  Google Scholar 

  72. Pitman MJ et al (2013) Embryologic innervation of the rat laryngeal musculature—A model for investigation of recurrent laryngeal nerve reinnervation. Laryngoscope 123(12):3117–3126. https://doi.org/10.1002/lary.24216

    Article  PubMed  Google Scholar 

  73. Riede T (2011) Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization. J Neurophysiol 106(5):2580–2592. https://doi.org/10.1152/jn.00478.2011

    Article  PubMed  PubMed Central  Google Scholar 

  74. Riede T, Borgard HL, Pasch B (2017) Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism. R Soc Open Sci 4:11. https://doi.org/10.1098/rsos.170976

    Article  Google Scholar 

  75. Ritvaniemi P et al (1995) Identification of col2a1 gene mutations in patients with chondrodysplasias and familial osteoarthritis. Arthritis Rheum 38(7):999–1004. https://doi.org/10.1002/art.1780380717

    Article  CAS  PubMed  Google Scholar 

  76. Roberts C et al (2005) Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 232(4):928–938. https://doi.org/10.1002/dvdy.20268

    Article  CAS  PubMed  Google Scholar 

  77. Rousseau B et al (2004) Characterization of chronic vocal fold scarringin a rabbit model. J Voice 18(1):116–124. https://doi.org/10.1016/j.jvoice.2003.06.001

    Article  PubMed  Google Scholar 

  78. Roy N et al (2005) Voice disorders in the general population: prevalence, risk factors, and occupational impact. Laryngoscope 115(11):1988–1995. https://doi.org/10.1097/01.mlg.0000179174.32345.41

    Article  PubMed  Google Scholar 

  79. Saga Y et al (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126(15):3437–3447

    CAS  PubMed  Google Scholar 

  80. Sanudo J, Domenech-Mateu JM (1990) The laryngeal primordium and epithelial lamina. A new interpretation. J Anat 171:207–222

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shinners MJ, Goding GS, McLoon LK (2006) Effect of recurrent laryngeal nerve section on the laryngeal muscles of adult rabbits. Otolaryngol Head Neck Surg 134(3):413–418. https://doi.org/10.1016/j.otohns.2005.11.037

    Article  PubMed  Google Scholar 

  82. Shiotani A, Westra WH, Flint PW (1999) Myosin heavy chain composition in human laryngeal muscles. Laryngoscope 109(9):1521–1524. https://doi.org/10.1097/00005537-199909000-00030

    Article  CAS  PubMed  Google Scholar 

  83. Silengo MC et al (1987) Oro-facial-digital syndrome II. Transitional type between the Mohr and the Majewski syndromes: report of two new cases. Clin Genet 31(5):331–336. https://doi.org/10.1111/j.1399-0004.1987.tb02817.x

    Article  CAS  PubMed  Google Scholar 

  84. Som PM, Curtin HD (2014) An updated and illustrated review of the complex embryology of the larynx and how laryngeal webs, atresias, and stenoses develop. Neurographics 4(4):189–203. https://doi.org/10.3174/ng.4140095

    Article  Google Scholar 

  85. Stevens CA, Ledbetter JC (2005) Significance of bifid epiglottis. Am J Med Genet 134 A(4):447–449. https://doi.org/10.1002/ajmg.a.30659

    Article  Google Scholar 

  86. Tabler JM et al (2017) Cilia-mediated hedgehog signaling controls form and function in the mammalian larynx. eLife 6:1–26. https://doi.org/10.7554/eLife.19153

    Article  Google Scholar 

  87. Tateya I et al (2007) Prenatal vitamin A deficiency causes laryngeal malformation in rats. Ann Otol Rhinol Laryngol 116(10):785–792

    Article  Google Scholar 

  88. Thomas LB et al (2008) Laryngeal muscles are spared in the dystrophin deficient mdx mouse. J Speech Lang Hear Res 51(3):586–595. https://doi.org/10.1044/1092-4388(2008/042)

    Article  PubMed  Google Scholar 

  89. Thomas LB et al (2009) Establishing a new animal model for the study of laryngeal biology and disease: an anatomic study of the mouse larynx. J Speech Lang Hear Res 52(3):802–811. https://doi.org/10.1044/1092-4388(2008/08-0087)

    Article  PubMed  Google Scholar 

  90. Thompson DM (2007) Abnormal sensorimotor integrative function of the larynx in congenital laryngomalacia: a new theory of etiology. Laryngoscope 117(6 SUPPL.):1–33. https://doi.org/10.1097/MLG.0b013e31804a5750

    Article  PubMed  Google Scholar 

  91. Titze I, Riede T, Mau T (2016) Predicting achievable fundamental frequency ranges in vocalization across species. PLoS Comput Biol 12(6):1–13. https://doi.org/10.1371/journal.pcbi.1004907

    Article  CAS  Google Scholar 

  92. Tsurumi H et al (2010) Bifid epiglottis: syndromic constituent rather than isolated anomaly. Pediatr Int 52(5):723–728. https://doi.org/10.1111/j.1442-200X.2010.03096.x

    Article  PubMed  Google Scholar 

  93. Vaux KK et al (2003) Vocal cord abnormalities in Williams syndrome: a further manifestation of elastin deficiency. Am J Med Genet 119A(3):302–304

    Article  Google Scholar 

  94. Vega-Cordova X et al (2010) Neurotrophin expression of laryngeal muscles in response to recurrent laryngeal nerve transection. Laryngoscope 120(8):1591–1596. https://doi.org/10.1002/lary.21026

    Article  CAS  PubMed  Google Scholar 

  95. Vermot J et al (2003) Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc Natl Acad Sci USA 100(4):1763–1768. https://doi.org/10.1073/pnas.0437920100

    Article  CAS  PubMed  Google Scholar 

  96. Watts CR, Awan SN, Marler JA (2008) ‘An investigation of voice quality in individuals with inherited elastin gene abnormalities. Clin Linguist Phonet 22:3

    Article  Google Scholar 

  97. Watts CR, Marler JA, Rousseau B (2011) Qualitative characterization of elastic fiber distribution in the mouse vocal fold: further development of an animal model. J Voice 25(1):1–6

    Article  Google Scholar 

  98. Wong NS et al (2019) Patterns of dysphagia and airway protection in infants with 22q11.2-deletion syndrome. Laryngoscope. https://doi.org/10.1002/lary.28317

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wyatt ME, Hartley BEJ (2005) Laryngotracheal reconstruction in congenital laryngeal webs and atresias. Otolaryngol Head Neck Surg 132(2):232–238. https://doi.org/10.1016/j.otohns.2004.09.032

    Article  PubMed  Google Scholar 

  100. Zaw-Tun HA, Burdi AR (1985) Reexamination of the origin and early development of the human larynx. Acta Anat 122(3):163–184

    Article  CAS  Google Scholar 

  101. Zeng L et al (2002) Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev 16(15):1990–2005. https://doi.org/10.1101/gad.1008002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang Z (2016) Mechanics of human voice production and control. J Acoust Soc Ame 140(4):2614–2635. https://doi.org/10.1121/1.4964509

    Article  Google Scholar 

  103. Zhang Z, Huynh T, Baldini A (2006) Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133(18):3587–3595. https://doi.org/10.1242/dev.02539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NIH NIDCD R01 DC004336 and R01 DC012773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Thibeault.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lungova, V., Thibeault, S.L. Mechanisms of larynx and vocal fold development and pathogenesis. Cell. Mol. Life Sci. 77, 3781–3795 (2020). https://doi.org/10.1007/s00018-020-03506-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03506-x

Keywords

Navigation