Skip to main content

Advertisement

Log in

Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The genus Striga, also called “witchweed”, is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, “strigolactones (SLs)”, is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-MN:

2-Methoxy-1-naphthaldehyde

5-DS:

5-Deoxystrigol

ASK1:

ARABIDOPSIS SKP-LIKE 1

ATPase:

Adenosine triphosphatase

CL:

Carlactone

CLA:

Carlactonoate

CLIM:

Covalently linked intermediate molecule

D14:

DWARF14

DSF:

Differential scanning fluorimetry

EAR:

Element binding factor-associated amphiphilic repression

GA:

Gibberellin

HTL:

HYPOSENSITIVE TO LIGHT

ITC:

Isothermal titration calorimetry

KAI2:

KARRIKIN INSENSITIVE2

KAR:

Karrikin

LGS1:

LOW GERMINATION STIMULANT 1

LRR:

Leucine-rich repeat

MAX2:

MORE AXILLARY GROWTH2

MP:

Methyl phenlactonoate

Nij-1:

Nijmegen-1

SCF:

SKP1-Cullin-F-box

SL:

Strigolactone

SLR1:

SLENDER RICE1

SMAX1:

SUPPRESSOR OF MAX2 1

SMXL:

SMAX1-Like

SOP:

Soporidine

SPL7:

Sphynolactone-7

TPR:

TOPLESS-related protein

YLG:

Yoshimulactone Green

YLGW:

YLG double

References

  1. Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15(4):227–235

    CAS  PubMed  Google Scholar 

  2. Ejeta G (2007) The Striga scourge in Africa: A growing pandemic. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control: towards ending the witch-hunt, 1st edn. World Scientific, Singapore, pp 3–16

    Google Scholar 

  3. Parker C (2012) Parasitic weeds: a world challenge. Weed Sci 60(2):269–276

    CAS  Google Scholar 

  4. Scholes JD, Press MC (2008) Striga infestation of cereal crops—an unsolved problem in resource limited agriculture. Curr Opin Plant Biol 11(2):180–186

    PubMed  Google Scholar 

  5. Rodenburg J, Demont M, Zwart SJ, Bastiaans L (2016) Parasitic weed incidence and related economic losses in rice in Africa. Agric Ecosyst Environ 235:306–317

    Google Scholar 

  6. Berner DK, Kling JG, Singh BB (1995) Striga research and control: a perspective from Africa. Plant Dis 79(7):652–660

    Google Scholar 

  7. Atera E, Itoh K (2011) Evaluation of ecologies and severity of Striga weed on rice in sub-Saharan Africa. Agric Biol J N Am 2(5):752–760

    Google Scholar 

  8. Gurney AL, Slate J, Press MC, Scholes JD (2006) A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol 169(1):199–208

    CAS  PubMed  Google Scholar 

  9. Li J, Timko MP (2009) Gene-for-gene resistance in Striga-cowpea associations. Science 325(5944):1094

    CAS  PubMed  Google Scholar 

  10. Gobena D, Shimels M, Rich PJ, Ruyter-spira C, Bouwmeester H, Kanuganti S (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci USA 114(17):4471–4476

    CAS  PubMed  Google Scholar 

  11. Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65(5):478–491

    CAS  PubMed  Google Scholar 

  12. Zwanenburg B, Blanco-Ania D (2018) Strigolactones: new plant hormones in the spotlight. J Exp Bot 69(9):2205–2218

    CAS  PubMed  Google Scholar 

  13. Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, McErlean CSP (2018) Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69(9):2231–2239

    CAS  PubMed  Google Scholar 

  14. Takahashi I, Asami T (2018) Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. J Exp Bot 69(9):2241–2254

    CAS  PubMed  Google Scholar 

  15. Brun G, Braem L, Thoiron S, Gevaert K, Goormachtig S, Delavault P (2018) Seed germination in parasitic plants: what insights can we expect from strigolactone research? J Exp Bot 69(9):2265–2280

    CAS  PubMed  Google Scholar 

  16. Tsuchiya Y, Yoshimura M, Hagihara S (2018) The dynamics of strigolactone perception in Striga hermonthica: a working hypothesis. J Exp Bot 69(9):2281–2290

    CAS  PubMed  Google Scholar 

  17. Lumba S, Holbrook-Smith D, McCourt P (2017) The perception of strigolactones in vascular plants. Nat Chem Biol 13(6):599–606

    CAS  PubMed  Google Scholar 

  18. Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    CAS  PubMed  Google Scholar 

  19. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of Witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154(3753):1189–1190

    CAS  PubMed  Google Scholar 

  20. Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94(17):6198–6199

    CAS  Google Scholar 

  21. Brooks DW, Bevinakatti HS, Powell DR (1985) The absolute structure of (+)-strigol. J Org Chem 50(20):3779–3781

    CAS  Google Scholar 

  22. Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49(7):1967–1973

    CAS  Google Scholar 

  23. Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) 2′-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55(20):8067–8072

    CAS  PubMed  Google Scholar 

  24. Hauck C, Muller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139(4):474–478

    CAS  Google Scholar 

  25. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Ann Rev Phytopathol 48:93–117

    CAS  Google Scholar 

  26. Zwanenburg B, Pospíšil T, Ćavar Zeljković S (2016) Strigolactones: new plant hormones in action. Planta 243(6):1311–1326

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zwanenburg B, Nayak SK, Charnikhova TV, Bouwmeester HJ (2013) New strigolactone mimics: structure–activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorg Med Chem Lett 23(18):5182–5186

    CAS  PubMed  Google Scholar 

  28. Yoneyama K, Arakawa R, Ishimoto K, Kim HI, Kisugi T, Xie X, Nomura T, Kanampiu F, Yokota T, Ezawa T, Yoneyama K (2015) Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol 206(3):983–989

    CAS  PubMed  Google Scholar 

  29. Mohemed N, Charnikhova T, Bakker EJ, van Ast A, Babiker AG, Bouwmeester HJ (2016) Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones. Pest Manag Sci 72(11):2082–2090

    PubMed  Google Scholar 

  30. Mangnus EM, Zwanenburg B (1992) Tentative molecular mechanism for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogs. J Agric Food Chem 40(6):1066–1070

    CAS  Google Scholar 

  31. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235(6):1197–1207

    CAS  PubMed  Google Scholar 

  32. Johnson AW, Gowda G, Hassanali A, Knox J, Monaco S, Razavi Z, Rosebery G (1981) The preparation of synthetic analogues of strigol. J Chem Soc Perkin 1(6):1734–1743

    Google Scholar 

  33. Nefkens GHL, Thuring JWJF, Beenakkers MFM, Zwanenburg B (1997) Synthesis of a phthaloylglycine-derived strigol analogue and its germination stimulatory activity toward seeds of the parasitic weeds Striga hermonthica and Orobanche crenata. J Agric Food Chem 45(6):2273–2277

    CAS  Google Scholar 

  34. Zwanenburg B, Mwakaboko AS, Kannan C (2016) Suicidal germination for parasitic weed control. Pest Manag Sci 72(11):2016–2025

    CAS  PubMed  Google Scholar 

  35. Xie X, Kisugi T, Yoneyama K, Nomura T, Akiyama K, Uchida K, Yokota T, McErlean CSP, Yoneyama K (2017) Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. Pestic Sci 42(2):58–61

    CAS  Google Scholar 

  36. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194

    CAS  PubMed  Google Scholar 

  37. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200

    CAS  PubMed  Google Scholar 

  38. Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6(1):18–28

    CAS  PubMed  Google Scholar 

  39. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50(8):1416–1424

    CAS  PubMed  Google Scholar 

  40. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46(1):79–86

    CAS  PubMed  Google Scholar 

  41. Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50(1):80–94

    CAS  PubMed  Google Scholar 

  42. Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504(7480):401–405

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504(7480):406–410

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22(21):2032–2036

    CAS  PubMed  Google Scholar 

  45. Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18(2):147–160

    CAS  PubMed  Google Scholar 

  46. Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    PubMed  Google Scholar 

  47. Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23(3):436–439

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miyakawa T, Tanokura M (2017) Structural basis for the regulation of phytohormone receptors. Biosci Biotechnol Biochem 81(7):1261–1273

    CAS  PubMed  Google Scholar 

  49. Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13(8):1779–1790

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469–473

    CAS  PubMed  Google Scholar 

  51. Zhao J, Wang T, Wang M, Liu Y, Yuan S, Gao Y, Yin L, Sun W, Peng L, Zhang W, Wan J, Li X (2014) DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol 55(6):1096–1109

    CAS  PubMed  Google Scholar 

  52. Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27(11):3128–3142

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27(11):3143–3159

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shabek N, Ticchiarelli F, Mao H, Hinds TR, Leyser O, Zheng N (2018) Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature 563(7733):652–656

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma H, Duan J, Ke J, He Y, Gu X, Xu TH, Yu H, Wang Y, Brunzelle JS, Jiang Y, Rothbart SB, Xu HE, Li J, Melcher K (2017) A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor–nucleosome complex. Sci Adv 3(6):e1601217

    PubMed  PubMed Central  Google Scholar 

  56. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14(1):57–70

    CAS  PubMed  PubMed Central  Google Scholar 

  57. de Saint Germain A, Clavé G, Badet-Denisot MA, Pillot JP, Cornu D, Le Caer JP, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer FD (2016) An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12(10):787–794

    Google Scholar 

  58. Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel JP, Kyozuka J, Yamaguchi S (2019) Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun 10(1):191

    PubMed  PubMed Central  Google Scholar 

  59. Chevalier F, Nieminen K, Sanchez-Ferrero JC, Rodriguez ML, Chagoyen M, Hardtke CS, Cubas P (2014) Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26(3):1134–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun XD, Ni M (2011) HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Mol Plant 4(1):116–126

    CAS  PubMed  Google Scholar 

  61. Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139(7):1285–1295

    CAS  PubMed  Google Scholar 

  62. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108(21):8897–8902

    CAS  PubMed  Google Scholar 

  63. Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165(3):1221–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Toh S, Holbrook-Smith D, Stokes ME, Tsuchiya Y, McCourt P (2014) Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem Biol 21(8):988–998

    CAS  PubMed  Google Scholar 

  65. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305(5686):977

    CAS  PubMed  Google Scholar 

  66. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2009) Identification of alkyl substituted 2H-Furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J Agric Food Chem 57(20):9475–9480

    CAS  PubMed  Google Scholar 

  67. Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    CAS  PubMed  Google Scholar 

  68. Flematti GR, Scaffidi A, Waters MT, Smith SM (2016) Stereospecificity in strigolactone biosynthesis and perception. Planta 243(6):1361–1373

    CAS  PubMed  Google Scholar 

  69. Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B, Westwood JH, Shirasu K, Bond CS, Dyer KA, Nelson DC (2015) Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349(6247):540–543

    CAS  PubMed  Google Scholar 

  70. Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Toh S, Holbrook-Smith D, Zhang H, McCourt P, Itami K, Kinoshita T, Hagihara S (2015) Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349(6250):864–868

    CAS  PubMed  Google Scholar 

  71. Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P (2015) Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350(6257):203–207

    CAS  PubMed  Google Scholar 

  72. Xu Y, Miyakawa T, Nakamura H, Nakamura A, Imamura Y, Asami T, Tanokura M (2016) Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica. Sci Rep 6:31386

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu Y, Miyakawa T, Nosaki S, Nakamura A, Lyu Y, Nakamura H, Ohto U, Ishida H, Shimizu T, Asami T, Tanokura M (2018) Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. Nat Commun 9(1):3947

    PubMed  PubMed Central  Google Scholar 

  74. Yao R, Wang F, Ming Z, Du X, Chen L, Wang Y, Zhang W, Deng H, Xie D (2017) ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Res 27(6):838–841

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fukui K, Ito S, Ueno K, Yamaguchi S, Kyozuka J, Asami T (2011) New branching inhibitors and their potential as strigolactone mimics in rice. Bioorg Med Chem Lett 21(16):4905–4908

    CAS  PubMed  Google Scholar 

  76. Fukui K, Ito S, Asami T (2013) Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol Plant 6(1):88–99

    CAS  PubMed  Google Scholar 

  77. Fukui K, Yamagami D, Ito S, Asami T (2017) A taylor-made design of phenoxyfuranone-type strigolactone mimic. Front Plant Sci 8:936

    PubMed  PubMed Central  Google Scholar 

  78. Zwanenburg B, Mwakaboko AS (2011) Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorg Med Chem 19(24):7394–7400

    CAS  PubMed  Google Scholar 

  79. Cala A, Ghooray K, Fernandez-Aparicio M, Molinillo JM, Galindo JC, Rubiales D, Macias FA (2016) Phthalimide-derived strigolactone mimics as germinating agents for seeds of parasitic weeds. Pest Manag Sci 72(11):2069–2081

    CAS  PubMed  Google Scholar 

  80. Jamil M, Kountche BA, Haider I, Guo X, Ntui VO, Jia KP, Ali S, Hameed US, Nakamura H, Lyu Y, Jiang K, Hirabayashi K, Tanokura M, Arold ST, Asami T, Al-Babili S (2018) Methyl phenlactonoates are efficient strigolactone analogs with simple structure. J Exp Bot 69(9):2319–2331

    CAS  PubMed  Google Scholar 

  81. Blanco-Ania D, Mateman JJ, Hýlová A, Spíchal L, Debie LM, Zwanenburg B (2019) Hybrid-type strigolactone analogues derived from auxins. Pest Manag Sci. https://doi.org/10.1002/ps.5553

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hýlová A, Pospíšil T, Spíchal L, Mateman JJ, Blanco-Ania D, Zwanenburg B (2019) New hybrid type strigolactone mimics derived from plant growth regulator auxin. N Biotechnol 48:76–82

    PubMed  Google Scholar 

  83. Uraguchi D, Kuwata K, Hijikata Y, Yamaguchi R, Imaizumi H, Am S, Rakers C, Mori N, Akiyama K, Irle S, McCourt P, Kinoshita T, Ooi T, Tsuchiya Y (2018) A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica. Science 362(6420):1301–1305

    CAS  PubMed  Google Scholar 

  84. Kountche BA, Jamil M, Yonli D, Nikiema MP, Blanco-Ania D, Asami T, Zwanenburg B, Al-Babili S (2019) Suicidal germination as a control strategy for Striga hermonthica (Benth.) in smallholder farms of sub‐Saharan Africa. Plants People Planet 1:107–118

    Google Scholar 

  85. Mashita O, Koishihara H, Fukui K, Nakamura H, Asami T (2016) Discovery and identification of 2-methoxy-1-naphthaldehyde as a novel strigolactone-signaling inhibitor. J Pestic Sci 41(3):71–78

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yoshimura M, Sato A, Kuwata K, Inukai Y, Kinoshita T, Itami K, Tsuchiya Y, Hagihara S (2018) Discovery of shoot branching regulator targeting strigolactone receptor DWARF14. ACS Cent Sci 4(2):230–234

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hamiaux C, Drummond RSM, Luo Z, Lee HW, Sharma P, Janssen BJ, Perry NB, Denny WA, Snowden KC (2018) Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: structural and functional insights. J Biol Chem 293(17):6530–6543

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Holbrook-Smith D, Toh S, Tsuchiya Y, McCourt P (2016) Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat Chem Biol 12(9):724–729

    CAS  PubMed  Google Scholar 

  89. Hameed US, Haider I, Jamil M, Kountche BA, Guo X, Zarban RA, Kim D, Al-Babili S, Arold ST (2018) Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor. EMBO Rep 19(9):e45619

    Google Scholar 

  90. Takeuchi J, Jiang K, Hirabayashi K, Imamura Y, Wu Y, Xu Y, Miyakawa T, Nakamura H, Tanokura M, Asami T (2018) Rationally designed strigolactone analogs as antagonists of the D14 receptor. Plant Cell Physiol 59(8):1545–1554

    CAS  PubMed  Google Scholar 

  91. Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y, Jiang K, Takahashi I, Niiyama R, Dohmae N, Tanokura M, Asami T (2019) Triazole ureas covalently bind to strigolactone receptor and antagonize strigolactone responses. Mol Plant 12(1):44–58

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Tanokura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyakawa, T., Xu, Y. & Tanokura, M. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cell. Mol. Life Sci. 77, 1103–1113 (2020). https://doi.org/10.1007/s00018-019-03318-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03318-8

Keywords

Navigation