Skip to main content

Advertisement

Log in

Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cohen J, Vincent JL, Adhikari NK, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Poll T, Pelfrene E (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15(5):581–614. doi:10.1016/S1473-3099(15)70112-X

    Article  PubMed  Google Scholar 

  2. Gotts JE, Matthay MA (2016) Sepsis: pathophysiology and clinical management. BMJ 353:i1585. doi:10.1136/bmj.i1585

    Article  PubMed  Google Scholar 

  3. Rossaint J, Zarbock A (2015) Pathogenesis of multiple organ failure in sepsis. Crit Rev Immunol 35(4):277–291

    Article  PubMed  Google Scholar 

  4. Wilhelms SB, Huss FR, Granath G, Sjoberg F (2010) Assessment of incidence of severe sepsis in Sweden using different ways of abstracting International Classification of Diseases codes: difficulties with methods and interpretation of results. Crit Care Med 38(6):1442–1449. doi:10.1097/CCM.0b013e3181de4406

    Article  PubMed  Google Scholar 

  5. Flaatten H (2004) Epidemiology of sepsis in Norway in 1999. Crit Care 8(4):R180–R184. doi:10.1186/cc2867

    Article  PubMed  PubMed Central  Google Scholar 

  6. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the US: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29(7):1303–1310

    Article  CAS  PubMed  Google Scholar 

  7. Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17(11):1381–1390. doi:10.1038/nm.2514

    Article  CAS  PubMed  Google Scholar 

  8. Martensson J, Bellomo R (2015) Sepsis-induced acute kidney injury. Crit Care Clin 31(4):649–660. doi:10.1016/j.ccc.2015.06.003

    Article  PubMed  Google Scholar 

  9. Verma SK, Molitoris BA (2015) Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 35(1):96–107. doi:10.1016/j.semnephrol.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Ponce A, Citalan-Madrid AF, Velazquez-Avila M, Vargas-Robles H, Schnoor M (2015) The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 113(1):20–36. doi:10.1160/TH14-04-0298

    Article  PubMed  Google Scholar 

  11. Schnoor M (2015) Endothelial actin-binding proteins and actin dynamics in leukocyte transendothelial migration. J Immunol 194(8):3535–3541. doi:10.4049/jimmunol.1403250

    Article  CAS  PubMed  Google Scholar 

  12. Amado-Azevedo J, Valent ET, Van Nieuw Amerongen GP (2014) Regulation of the endothelial barrier function: a filum granum of cellular forces, Rho-GTPase signaling and microenvironment. Cell Tissue Res 355(3):557–576. doi:10.1007/s00441-014-1828-6

    Article  CAS  PubMed  Google Scholar 

  13. Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP (2002) Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J 16(6):583–585

    CAS  PubMed  Google Scholar 

  14. Marcos-Ramiro B, Garcia-Weber D, Millan J (2014) TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost 112(5). doi:10.1160/TH14-04-0299

  15. Schnittler H (2016) Contraction of endothelial cells: 40 years of research, but the debate still lives. Histochem Cell Biol. doi:10.1007/s00418-016-1501-0

    PubMed  Google Scholar 

  16. Dorland YL, Huveneers S (2016) Cell–cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci. doi:10.1007/s00018-016-2325-8

    PubMed  PubMed Central  Google Scholar 

  17. Hordijk PL (2016) Recent insights into endothelial control of leukocyte extravasation. Cell Mol Life Sci 73 (8):1591–1608. doi:10.1007/s00018-016-2136-y

    Article  CAS  PubMed  Google Scholar 

  18. Zarbock A, Distasi MR, Smith E, Sanders JM, Kronke G, Harry BL, von Vietinghoff S, Buscher K, Nadler JL, Ley K (2009) Improved survival and reduced vascular permeability by eliminating or blocking 12/15-lipoxygenase in mouse models of acute lung injury (ALI). J Immunol 183(7):4715–4722. doi:10.4049/jimmunol.0802592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allison N, Yimu Y, Mario P, Lynelle S, Aneta G, Rubin MT, Eric PS (2014) Endothelial glycocalyx reconstitution influences pulmonary vascular permeability and is aberrant in sepsis. In: A98. EN.HELIAL BARRIER DYNAMICS: REGULATORS OF PERMEABILITY AND REPAIR. American Thoracic Society International Conference Abstracts. American Thoracic Society, pp A2208–A2208. doi:10.1164/ajrccm-conference.2014.189.1_MeetingAbstracts.A2208

  20. Lee WL, Slutsky AS (2010) Sepsis and endothelial permeability. N Engl J Med 363(7):689–691. doi:10.1056/NEJMcibr1007320

    Article  CAS  PubMed  Google Scholar 

  21. Cinel I, Ark M, Dellinger P, Karabacak T, Tamer L, Cinel L, Michael P, Hussein S, Parrillo JE, Kumar A, Kumar A (2012) Involvement of Rho kinase (ROCK) in sepsis-induced acute lung injury. J Thorac Dis 4(1):30–39. doi:10.3978/j.issn.2072-1439.2010.08.04

    PubMed  PubMed Central  Google Scholar 

  22. Tasaka S, Koh H, Yamada W, Shimizu M, Ogawa Y, Hasegawa N, Yamaguchi K, Ishii Y, Richer SE, Doerschuk CM, Ishizaka A (2005) Attenuation of endotoxin-induced acute lung injury by the Rho-associated kinase inhibitor, Y-27632. Am J Respir Cell Mol Biol 32(6):504–510. doi:10.1165/rcmb.2004-0009OC

    Article  CAS  PubMed  Google Scholar 

  23. García Ponce A. CM, A.F., Vargas Robles H., Chánez Paredes S., Nava P., Betanzos, A., Zarbock A., Rottner K., Dietmar Vestweber D., Schnoor M. (2016) Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility. Sci Rep 2016(2016):srep29003

    Article  Google Scholar 

  24. van Nieuw Amerongen GP, van Delft S, Vermeer MA, Collard JG, van Hinsbergh VW (2000) Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res 87(4):335–340

    Article  Google Scholar 

  25. Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E (1996) Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 16(3):488–496

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Braun OO, Zhang S, Norstrom E, Thorlacius H (2015) Thrombin generation in abdominal sepsis is Rho-kinase-dependent. Biochem Biophys Res Commun 460(3):691–696. doi:10.1016/j.bbrc.2015.03.091

    Article  CAS  PubMed  Google Scholar 

  27. Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50(1):17–24. doi:10.1097/FJC.0b013e318070d1bd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boerma M, Fu Q, Wang J, Loose DS, Bartolozzi A, Ellis JL, McGonigle S, Paradise E, Sweetnam P, Fink LM, Vozenin-Brotons MC, Hauer-Jensen M (2008) Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin. Blood Coagul Fibrinol Int J Haemost Thromb 19 (7):709–718. doi:10.1097/MBC.0b013e32830b2891

    Article  CAS  Google Scholar 

  29. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K (2000) Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275(5):3577–3582

    Article  CAS  PubMed  Google Scholar 

  30. Gorovoy M, Han J, Pan H, Welch E, Neamu R, Jia Z, Predescu D, Vogel S, Minshall RD, Ye RD, Malik AB, Voyno-Yasenetskaya T (2009) LIM kinase 1 promotes endothelial barrier disruption and neutrophil infiltration in mouse lungs. Circ Res 105(6):549–556. doi:10.1161/CIRCRESAHA.109.195883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY (2013) Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 33(5):911–933. doi:10.1002/med.21270

    Article  CAS  PubMed  Google Scholar 

  32. Wainwright MS, Rossi J, Schavocky J, Crawford S, Steinhorn D, Velentza AV, Zasadzki M, Shirinsky V, Jia Y, Haiech J, Van Eldik LJ, Watterson DM (2003) Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc Natl Acad Sci USA 100(10):6233–6238. doi:10.1073/pnas.1031595100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu Y, Lv N, Lu Z, Zheng YY, Zhang WC, Chen C, Peng YJ, He WQ, Meng FQ, Zhu MS, Chen HQ (2012) Deletion of myosin light chain kinase in endothelial cells has a minor effect on the lipopolysaccharide-induced increase in microvascular endothelium permeability in mice. FEBS J 279(8):1485–1494. doi:10.1111/j.1742-4658.2012.08541.x

    Article  CAS  PubMed  Google Scholar 

  34. Garcia JG, Moreno Vinasco L (2006) Genomic insights into acute inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 291(6):L1113–L1117. doi:10.1152/ajplung.00266.2006

    Article  CAS  PubMed  Google Scholar 

  35. Kamp R, Sun X, Garcia JG (2008) Making genomics functional: deciphering the genetics of acute lung injury. Proc Am Thorac Soc 5(3):348–353. doi:10.1513/pats.200709-152DR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Essler M, Amano M, Kruse HJ, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273(34):21867–21874

    Article  CAS  PubMed  Google Scholar 

  37. Reddi BA, Beltrame JF, Young RL, Wilson DP (2015) Calcium desensitisation in late polymicrobial sepsis is associated with loss of vasopressor sensitivity in a murine model. Intensiv Care Med Exp 3(1):36. doi:10.1186/s40635-014-0036-8

    Article  Google Scholar 

  38. Zheng W, Kou Y, Gao FL, Ouyang XH (2016) Enzymatic changes in myosin regulatory proteins may explain vasoplegia in terminally ill patients with sepsis. Biosci Rep 36(2). doi:10.1042/BSR20150207

  39. Bogatcheva NV, Zemskova MA, Poirier C, Mirzapoiazova T, Kolosova I, Bresnick AR, Verin AD (2011) The suppression of myosin light chain (MLC) phosphorylation during the response to lipopolysaccharide (LPS): beneficial or detrimental to endothelial barrier? J Cell Physiol 226(12):3132–3146. doi:10.1002/jcp.22669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Essler M, Staddon JM, Weber PC, Aepfelbacher M (2000) Cyclic AMP blocks bacterial lipopolysaccharide-induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling. J Immunol 164(12):6543–6549

    Article  CAS  PubMed  Google Scholar 

  41. Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 8(2):113–123. doi:10.1038/ncb1356

    Article  CAS  PubMed  Google Scholar 

  42. Garrean S, Gao XP, Brovkovych V, Shimizu J, Zhao YY, Vogel SM, Malik AB (2006) Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol (Baltimore, Md : 1950) 177(7):4853–4860

    Article  CAS  Google Scholar 

  43. de Almeida CJ, Witkiewicz AK, Jasmin JF, Tanowitz HB, Sotgia F, Frank PG, Lisanti MP (2011) Caveolin-2-deficient mice show increased sensitivity to endotoxemia. Cell cycle (Georgetown, Tex) 10 (13):2151–2161. doi:10.4161/cc.10.13.16234

    Article  Google Scholar 

  44. Guo Q, Shen N, Yuan K, Li J, Wu H, Zeng Y, Fox J 3rd, Bansal AK, Singh BB, Gao H, Wu M (2012) Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity. Eur J Immunol 42(6):1500–1511. doi:10.1002/eji.201142051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuan K, Huang C, Fox J, Gaid M, Weaver A, Li G, Singh BB, Gao H, Wu M (2011) Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor kappaB (NF-kappaB). J Biol Chem 286(24):21814–21825. doi:10.1074/jbc.M111.237628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng H, Guo L, Song Z, Gao H, Wang D, Fu W, Han J, Li Z, Huang B, Li XA (2010) Caveolin-1 protects against sepsis by modulating inflammatory response, alleviating bacterial burden, and suppressing thymocyte apoptosis. J Biol Chem 285(33):25154–25160. doi:10.1074/jbc.M110.116897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng H, Guo W, Han J, Li XA (2013) Role of caveolin-1 and caveolae signaling in endotoxemia and sepsis. Life Sci 93(1):1–6. doi:10.1016/j.lfs.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Echtenacher B, Freudenberg MA, Jack RS, Mannel DN (2001) Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis. Infect Immun 69(12):7271–7276. doi:10.1128/IAI.69.12.7172-7276.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiao H, Zhang Y, Yan Z, Wang ZG, Liu G, Minshall RD, Malik AB, Hu G (2013) Caveolin-1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88-dependent signaling and sepsis-induced lung inflammation. J Immunol (Baltimore, Md : 1950) 191 (12):6191–6199. doi:10.4049/jimmunol.1300873

    Article  CAS  Google Scholar 

  50. Vadillo E, Pelayo R (2012) [Toll-like receptors in development and function of the hematopoietic system]. Rev Invest Clin 64(5):461–476

    CAS  PubMed  Google Scholar 

  51. Mirza MK, Yuan J, Gao XP, Garrean S, Brovkovych V, Malik AB, Tiruppathi C, Zhao YY (2010) Caveolin-1 deficiency dampens Toll-like receptor 4 signaling through eNOS activation. Am J Pathol 176(5):2344–2351. doi:10.2353/ajpath.2010.091088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang X, Pan L, Pu H, Wang Y, Zhang X, Li C, Yang Z (2013) Loss of caveolin-1 promotes endothelial-mesenchymal transition during sepsis: a membrane proteomic study. Int J Mol Med 32(3):585–592. doi:10.3892/ijmm.2013.1432

    CAS  PubMed  Google Scholar 

  53. Kwok W, Clemens MG (2010) Targeted mutation of Cav-1 alleviates the effect of endotoxin in the inhibition of ET-1-mediated eNOS activation in the liver. Shock (Augusta, Ga) 33(4):392–398. doi:10.1097/SHK.0b013e3181be3e99

    Article  CAS  Google Scholar 

  54. Schlegel N, Leweke R, Meir M, Germer CT, Waschke J (2012) Role of NF-kappaB activation in LPS-induced endothelial barrier breakdown. Histochem Cell Biol 138(4):627–641. doi:10.1007/s00418-012-0983-7

    Article  CAS  PubMed  Google Scholar 

  55. Cardoso FL, Kittel Á, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA (2012) Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PloS One 7(5):e35919. doi:10.1371/journal.pone.0035919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwon OK, Lee W, Kim SJ, Lee YM, Lee JY, Kim JY, Bae JS, Lee S (2015) In-depth proteomics approach of secretome to identify novel biomarker for sepsis in LPS-stimulated endothelial cells. Electrophoresis 36(23):2851–2858. doi:10.1002/elps.201500198

    Article  CAS  PubMed  Google Scholar 

  57. Lee W, Kwon OK, Han MS, Lee YM, Kim SW, Kim KM, Lee T, Lee S, Bae JS (2015) Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb Haemost 114(2):350–363. doi:10.1160/th14-11-0969

    Article  CAS  PubMed  Google Scholar 

  58. Riedemann NC, Guo RF, Ward PA (2003) Novel strategies for the treatment of sepsis. Nat Med 9(5):517–524. doi:10.1038/nm0503-517

    Article  CAS  PubMed  Google Scholar 

  59. Bogatcheva NV, Zemskova MA, Kovalenkov Y, Poirier C, Verin AD (2009) Molecular mechanisms mediating protective effect of cAMP on lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) hyperpermeability. J Cell Physiol 221(3):750–759. doi:10.1002/jcp.21913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schnoor M, Lai FP, Zarbock A, Klaver R, Polaschegg C, Schulte D, Weich HA, Oelkers JM, Rottner K, Vestweber D (2011) Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. J Exp Med 208(8):1721–1735 pii]10.1084/jem.20101920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abbasi T, Garcia JG (2013) Sphingolipids in lung endothelial biology and regulation of vascular integrity. Handb Exp Pharmacol (216):201–226. doi:10.1007/978-3-7091-1511-4_10

  62. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review). Int J Oncol 45(1):18–30. doi:10.3892/ijo.2014.2399

    PubMed  Google Scholar 

  63. Liu Z, Zhong T, Zheng D, Cepinskas I, Peng T, Su L (2016) Heat stress pretreatment decreases lipopolysaccharide-induced apoptosis via the p38 signaling pathway in human umbilical vein endothelial cells. Mol Med Rep 14(1):1007–1013. doi:10.3892/mmr.2016.5303

    CAS  PubMed  Google Scholar 

  64. You W, Min X, Zhang X, Qian B, Pang S, Ding Z, Li C, Gao X, Di R, Cheng Y, Liu L (2009) Cardiac-specific expression of heat shock protein 27 attenuated endotoxin-induced cardiac dysfunction and mortality in mice through a PI3K/Akt-dependent mechanism. Shock (Augusta, Ga) 32(1):108–117. doi:10.1097/SHK.0b013e318199165d

    Article  CAS  Google Scholar 

  65. Hirano S, Rees RS, Yancy SL, Welsh MJ, Remick DG, Yamada T, Hata J, Gilmont RR (2004) Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 20(1):1–14

    Article  CAS  PubMed  Google Scholar 

  66. Razinia Z, Makela T, Ylanne J, Calderwood DA (2012) Filamins in mechanosensing and signaling. Annu Rev Biophys 41:227–246. doi:10.1146/annurev-biophys-050511-102252

    Article  CAS  PubMed  Google Scholar 

  67. Singleton PA, Mirzapoiazova T, Guo Y, Sammani S, Mambetsariev N, Lennon FE, Moreno-Vinasco L, Garcia JG (2010) High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness. Am J Physiol Lung Cell Mol Physiol 299(5):L639–L651. doi:10.1152/ajplung.00405.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Skaria T, Bachli E, Schoedon G (2016) Wnt5A/Ryk signaling critically affects barrier function in human vascular endothelial cells. Cell Adhes Migr:1–15. doi:10.1080/19336918.2016.1178449

    Google Scholar 

  69. Kwok W, Clemens MG (2014) Rho-kinase activation contributes to Lps-induced impairment of endothelial nitric oxide synthase activation by endothelin-1 in cultured hepatic sinusoidal endothelial cells. Shock (Augusta, Ga) 42(6):554–561. doi:10.1097/shk.0000000000000252

    Article  CAS  Google Scholar 

  70. Becker PM, Kazi AA, Wadgaonkar R, Pearse DB, Kwiatkowski D, Garcia JG (2003) Pulmonary vascular permeability and ischemic injury in gelsolin-deficient mice. Am J Respir Cell Mol Biol 28(4):478–484. doi:10.1165/rcmb.2002-0024OC

    Article  CAS  PubMed  Google Scholar 

  71. Bucki R, Georges PC, Espinassous Q, Funaki M, Pastore JJ, Chaby R, Janmey PA (2005) Inactivation of endotoxin by human plasma gelsolin. BioChemistry 44(28):9590–9597. doi:10.1021/bi0503504

    Article  CAS  PubMed  Google Scholar 

  72. Lee PS, Patel SR, Christiani DC, Bajwa E, Stossel TP, Waxman AB (2008) Plasma gelsolin depletion and circulating actin in sepsis: a pilot study. PloS One 3(11):e3712. doi:10.1371/journal.pone.0003712

    Article  PubMed  PubMed Central  Google Scholar 

  73. Suhler E, Lin W, Yin HL, Lee WM (1997) Decreased plasma gelsolin concentrations in acute liver failure, myocardial infarction, septic shock, and myonecrosis. Crit Care Med 25(4):594–598

    Article  CAS  PubMed  Google Scholar 

  74. Daniel AE, van Buul JD (2013) Endothelial junction regulation: a prerequisite for leukocytes crossing the vessel wall. J Innate Immun 5(4):324–335. doi:10.1159/000348828

    Article  CAS  PubMed  Google Scholar 

  75. Vestweber D (2015) How leukocytes cross the vascular endothelium. Nat Rev Immunol 15(11):692–704. doi:10.1038/nri3908

    Article  CAS  PubMed  Google Scholar 

  76. Muller WA (2014) How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am J Pathol 184(4):886–896. doi:10.1016/j.ajpath.2013.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hasan Z, Palani K, Rahman M, Zhang S, Syk I, Jeppsson B, Thorlacius H (2012) Rho-kinase signaling regulates pulmonary infiltration of neutrophils in abdominal sepsis via attenuation of CXC chemokine formation and Mac-1 expression on neutrophils. Shock 37(3):282–288. doi:10.1097/SHK.0b013e3182426be4

    Article  CAS  PubMed  Google Scholar 

  78. Xu J, Gao XP, Ramchandran R, Zhao YY, Vogel SM, Malik AB (2008) Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating beta2 integrins. Nat Immunol 9(8):880–886. doi:10.1038/ni0.1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han S, Lee SJ, Kim KE, Lee HS, Oh N, Park I, Ko E, Oh SJ, Lee YS, Kim D, Lee S, Lee DH, Lee KH, Chae SY, Lee JH, Kim SJ, Kim HC, Kim S, Kim SH, Kim C, Nakaoka Y, He Y, Augustin HG, Hu J, Song PH, Kim YI, Kim P, Kim I, Koh GY (2016) Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 8(335):335ra355. doi:10.1126/scitranslmed.aad9260

    Article  Google Scholar 

  80. Camp SM, Chiang ET, Sun C, Usatyuk PV, Bittman R, Natarajan V, Garcia JG, Dudek SM (2016) “Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: methoxy-FTY720, fluoro-FTY720, and beta-glucuronide-FTY720”. Chem Phys Lipids 194:85–93. doi:10.1016/j.chemphyslip.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  81. Feng Y, Hu L, Xu Q, Yuan H, Ba L, He Y, Che H (2015) Cytoprotective role of alpha-1 antitrypsin in vascular endothelial cell under hypoxia/reoxygenation condition. J Cardiovasc Pharmacol 66(1):96–107. doi:10.1097/fjc.0000000000000250

    Article  CAS  PubMed  Google Scholar 

  82. Han J, Ding R, Zhao D, Zhang Z, Ma X (2013) Unfractionated heparin attenuates lung vascular leak in a mouse model of sepsis: role of RhoA/Rho kinase pathway. Thromb Res 132(1):e42–e47. doi:10.1016/j.thromres.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  83. Chatterjee A, Snead C, Yetik-Anacak G, Antonova G, Zeng J, Catravas JD (2008) Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. Am J Physiol Lung Cell Mol Physiol 294(4):L755–L763. doi:10.1152/ajplung.00350.2007

    Article  CAS  PubMed  Google Scholar 

  84. Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Antonova G, Snead C, Cannon J, Venema RC, Catravas JD (2007) Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 176(7):667–675. doi:10.1164/rccm.200702-291OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kolosova IA, Mirzapoiazova T, Moreno-Vinasco L, Sammani S, Garcia JG, Verin AD (2008) Protective effect of purinergic agonist ATPgammaS against acute lung injury. Am J Physiol Lung Cell Mol Physiol 294(2):L319–L324. doi:10.1152/ajplung.00283.2007

    Article  CAS  PubMed  Google Scholar 

  86. Preau S, Delguste F, Yu Y, Remy-Jouet I, Richard V, Saulnier F, Boulanger E, Neviere R (2016) Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxid Redox Signal 24(10):529–542. doi:10.1089/ars.2015.6421

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Wu Y, Wang Z, Zhang XH, Wu WK (2010) Fasudil attenuates lipopolysaccharide-induced acute lung injury in mice through the Rho/Rho kinase pathway. Med sci Monit Int Med J Exp Clin Res 16(4):BR112–B118

    CAS  Google Scholar 

  88. Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krull M, Seybold J, Seeger W, Rascher W, Schutte H, Suttorp N (2002) Adrenomedullin reduces endothelial hyperpermeability. Circ Res 91(7):618–625

    Article  CAS  PubMed  Google Scholar 

  89. Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004) Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 279(8):7264–7274. doi:10.1074/jbc.M305332200

    Article  CAS  PubMed  Google Scholar 

  90. Shah S, Savjani J (2016) A review on ROCK-II inhibitors: from molecular modelling to synthesis. Bioorg Med Chem Lett 26(10):2383–2391. doi:10.1016/j.bmcl.2016.03.113

    Article  CAS  PubMed  Google Scholar 

  91. McGown CC, Brown NJ, Hellewell PG, Brookes ZL (2011) ROCK induced inflammation of the microcirculation during endotoxemia mediated by nitric oxide synthase. Microvasc Res 81(3):281–288. doi:10.1016/j.mvr.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  92. Mu E, Ding R, An X, Li X, Chen S, Ma X (2012) Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thromb Res 129(4):479–485. doi:10.1016/j.thromres.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  93. Jacobson JR, Dudek SM, Singleton PA, Kolosova IA, Verin AD, Garcia JG (2006) Endothelial cell barrier enhancement by ATP is mediated by the small GTPase Rac and cortactin. Am J Physiol Lung Cell Mol Physiol 291(2):L289–L295. doi:10.1152/ajplung.00343.2005

    Article  CAS  PubMed  Google Scholar 

  94. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192(2):553–560. doi:10.1006/bbrc.1993.1451

    Article  CAS  PubMed  Google Scholar 

  95. Aslam M, Pfeil U, Gunduz D, Rafiq A, Kummer W, Piper HM, Noll T (2012) Intermedin (adrenomedullin2) stabilizes the endothelial barrier and antagonizes thrombin-induced barrier failure in endothelial cell monolayers. Br J Pharmacol 165(1):208–222. doi:10.1111/j.1476-5381.2011.01540.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shimekake Y, Nagata K, Ohta S, Kambayashi Y, Teraoka H, Kitamura K, Eto T, Kangawa K, Matsuo H (1995) Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells. J Biol Chem 270(9):4412–4417

    Article  CAS  PubMed  Google Scholar 

  97. Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4(9):733–738. doi:10.1038/nrm1197

    Article  CAS  PubMed  Google Scholar 

  98. Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN (2005) Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 105(5):1950–1955. doi:10.1182/blood-2004-05-1987

    Article  CAS  PubMed  Google Scholar 

  99. Ueda S, Nishio K, Minamino N, Kubo A, Akai Y, Kangawa K, Matsuo H, Fujimura Y, Yoshioka A, Masui K, Doi N, Murao Y, Miyamoto S (1999) Increased plasma levels of adrenomedullin in patients with systemic inflammatory response syndrome. Am J Respir Crit Care Med 160(1):132–136. doi:10.1164/ajrccm.160.1.9810006

    Article  CAS  PubMed  Google Scholar 

  100. Muller-Redetzky HC, Will D, Hellwig K, Kummer W, Tschernig T, Pfeil U, Paddenberg R, Menger MD, Kershaw O, Gruber AD, Weissmann N, Hippenstiel S, Suttorp N, Witzenrath M (2014) Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. Crit care 18(2):R73. doi:10.1186/cc13830

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hyvelin JM, Shan Q, Bourreau JP (2002) Adrenomedullin: a cardiac depressant factor in septic shock. J Card Surg 17(4):328–335

    Article  PubMed  Google Scholar 

  102. Rizzo AN, Aman J, van Nieuw Amerongen GP, Dudek SM (2015) Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome. Arterioscler Thromb Vasc Biol 35(5):1071–1079. doi:10.1161/atvbaha.115.305085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barabutis N, Handa V, Dimitropoulou C, Rafikov R, Snead C, Kumar S, Joshi A, Thangjam G, Fulton D, Black SM, Patel V, Catravas JD (2013) LPS induces pp60c-src-mediated tyrosine phosphorylation of Hsp90 in lung vascular endothelial cells and mouse lung. Am J Physiol Lung Cell Mol Physiol 304(12):L883–L893. doi:10.1152/ajplung.00419.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an international bilateral grant from the Mexican Council for Science and Technology (Conacyt, 207268 to MS) and the German Ministry for Education and Research (BMBF, 01DN14039 to AZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Schnoor or Alexander Zarbock.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnoor, M., García Ponce, A., Vadillo, E. et al. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell. Mol. Life Sci. 74, 1985–1997 (2017). https://doi.org/10.1007/s00018-016-2449-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2449-x

Keywords

Navigation