Skip to main content

Advertisement

Log in

Free fatty acid G-protein coupled receptor signaling in M1 skewed white adipose tissue macrophages

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Obesity is associated with the establishment and maintenance of a low grade, chronically inflamed state in the white adipose tissue (WAT) of the body. The WAT macrophage population is a major cellular participant in this inflammatory process that significantly contributes to the pathophysiology of the disease, with the adipose depots of obese individuals, relative to lean counterparts, having an elevated number of macrophages that are skewed towards a pro-inflammatory phenotype. Alterations in the WAT lipid micro-environment, and specifically the availability of free fatty acids, are believed to contribute towards the obesity-related quantitative and functional changes observed in these cells. This review specifically addresses the involvement of the five G-protein coupled free fatty acid receptors which bind exogenous FFAs and signal in macrophages. Particular focus is placed on the involvement of these receptors in macrophage migration and cytokine production, two important aspects that modulate inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mbanya JC, Assah FK, Saji J, Atanga EN (2014) Obesity and type 2 diabetes in Sub-Sahara Africa. Curr Diab Rep 14(7):501. doi:10.1007/s11892-014-0501-5

    Article  PubMed  Google Scholar 

  2. WHO (2010) Global status report on noncommunicable diseases. World Health Organization, Italy

    Google Scholar 

  3. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mraz M, Haluzik M (2014) The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol 222:R113–R127. doi:10.1530/JOE-14-0283

    Article  CAS  PubMed  Google Scholar 

  5. Xu X, Grijalva A, Skowronski A et al (2013) Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab 18:816–830. doi:10.1016/j.cmet.2013.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeyda M, Farmer D, Todoric J et al (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes 31:1420–1428. doi:10.1038/sj.ijo.0803632

    Article  CAS  Google Scholar 

  8. Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262:36–55. doi:10.1111/imr.12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808. doi:10.1172/JCI200319246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Furth R, Cohn ZA, Hirsch JG et al (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–852

    PubMed  PubMed Central  Google Scholar 

  11. Melnicoff MJ, Horan PK, Breslin EW, Morahan PS (1988) Maintenance of peritoneal macrophages in the steady state. J Leukoc Biol 44:367–375

    CAS  PubMed  Google Scholar 

  12. Lichanska AM, Hume DA (2000) Origins and functions of phagocytes in the embryo. Exp Hematol 28:601–611. doi:10.1016/S0301-472X(00)00157-0

    Article  CAS  PubMed  Google Scholar 

  13. Yona S, Kim K-W, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91. doi:10.1016/j.immuni.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  14. Cancello R, Henegar C, Viguerie N et al (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54:2277–2286

    Article  CAS  PubMed  Google Scholar 

  15. Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561. doi:10.2337/db06-0133

    Article  CAS  PubMed  Google Scholar 

  16. Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830. doi:10.1172/JCI200319451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lumeng CN, DeYoung SM, Bodzin JL, Saltiel AR (2007) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23. doi:10.2337/db06-1076

    Article  CAS  PubMed  Google Scholar 

  18. Hodson L (2014) Adipose tissue oxygenation: effects on metabolic function. Adipocyte 3(1):75–80. doi:10.4161/adip.27114

    Article  PubMed  Google Scholar 

  19. Ye J (2009) Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes 33:54–66. doi:10.1038/ijo.2008.229

    Article  CAS  Google Scholar 

  20. Hosogai N, Fukuhara A, Oshima K et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911. doi:10.2337/db06-0911

    Article  CAS  PubMed  Google Scholar 

  21. Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293:E1118–E1128. doi:10.1152/ajpendo.00435.2007

    Article  CAS  PubMed  Google Scholar 

  22. Conine SJ, Cross JV (2014) MIF deficiency does not alter glucose homeostasis or adipose tissue inflammatory cell infiltrates during diet-induced obesity. Obesity (Silver Spring) 22(2):418–425. doi:10.1002/oby.20555

    Article  CAS  Google Scholar 

  23. Leenen PJM, de Bruijn MFTR, Voerman JSA et al (1994) Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 174:5–19. doi:10.1016/0022-1759(94)90005-1

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi K, Mizuarai S, Araki H et al (2003) Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 278:46654–46660. doi:10.1074/jbc.M309895200

    Article  CAS  PubMed  Google Scholar 

  25. Tsou C-L, Peters W, Si Y et al (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909. doi:10.1172/JCI29919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326. doi:10.1089/jir.2008.0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bartels K, Grenz A, Eltzschig HK (2013) Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci 110:18351–18352. doi:10.1073/pnas.1318345110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Famulla S, Horrighs A, Cramer A et al (2012) Hypoxia reduces the response of human adipocytes towards TNFα resulting in reduced NF-κB signaling and MCP-1 secretion. Int J Obes 36:986–992

    Article  CAS  Google Scholar 

  29. Kamei N, Tobe K, Suzuki R et al (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614. doi:10.1074/jbc.M601284200

    Article  CAS  PubMed  Google Scholar 

  30. Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. doi:10.1172/JCI26498DS1

    PubMed  PubMed Central  Google Scholar 

  31. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18. doi:10.1111/j.1467-789X.2009.00623.x

    Article  PubMed  Google Scholar 

  32. Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355. doi:10.1194/jlr.M500294-JLR200

    Article  CAS  PubMed  Google Scholar 

  33. Strissel KJ, Stancheva Z, Miyoshi H et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918. doi:10.2337/db07-0767

    Article  CAS  PubMed  Google Scholar 

  34. Zong W-X, Thompson CB (2006) Necrotic cell death as a cell fate. Genes Dev 20:1–5. doi:10.1101/gad.1376506

    Article  CAS  PubMed  Google Scholar 

  35. Alkhouri N, Gornicka A, Berk MP et al (2010) Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem 285:3428–3438. doi:10.1074/jbc.M109.074252

    Article  CAS  PubMed  Google Scholar 

  36. Prieur X, Mok CYL, Velagapudi VR et al (2011) Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60:797–809. doi:10.2337/db10-0705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Landin K, Lönnroth P, Krotkiewski M et al (1990) Increased insulin resistance and fat cell lipolysis in obese but not lean women with a high waist/hip ratio. Eur J Clin Invest 20:530–535

    Article  CAS  PubMed  Google Scholar 

  38. Kosteli A, Sugaru E, Haemmerle G et al (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120(10):3466–3479. doi:10.1172/JCI42845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wentworth JM, Naselli G, Brown WA, Doyle L (2010) Pro-inflammatory CD11c+ CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59:1648–1656. doi:10.2337/db09-0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim J-Y, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637. doi:10.1172/JCI31021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nadler ST, Stoehr JP, Schueler KL et al (2000) The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci USA 97:11371–11376. doi:10.1073/pnas.97.21.11371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lamontagne V, El Akoum S, Cloutier I, Tanguay J-F (2013) High-fat diets-induced metabolic alterations alter the differentiation potential of adipose tissue-derived stem cells. Open J Endocr Metab Dis 3:197–207

    Article  CAS  Google Scholar 

  43. Wu C-L, Diekman BO, Jain D, Guilak F (2013) Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue, and infrapatellar fad pad: the effects of free fatty acids. Int J Obes (Lond) 37:1079–1087. doi:10.1038/ijo.2012.171

    Article  CAS  Google Scholar 

  44. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. doi:10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20. doi:10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi:10.1038/nri1733

    Article  CAS  PubMed  Google Scholar 

  47. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. doi:10.12703/P6-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374

    Article  CAS  PubMed  Google Scholar 

  49. Singer K, DelProposto J, Lee Morris D et al (2014) Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol Metab 3:664–675. doi:10.1016/j.molmet.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clement K, Viguerie N, Poitou C et al (2004) Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. Faseb J 18:1657–1669. doi:10.1096/fj.04-2204com

    Article  CAS  PubMed  Google Scholar 

  51. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  52. Hotamisligil GS, Arner P, Caro JF et al (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kanety H, Feinstein R, Papa MZ et al (1995) Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1). J Biol Chem 270:23780–23784. doi:10.1074/jbc.270.40.23780

    Article  CAS  PubMed  Google Scholar 

  54. Hotamisligil GS, Peraldi P, Budavari A et al (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668

    Article  CAS  PubMed  Google Scholar 

  55. Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068. doi:10.1161/01.ATV.0000183883.72263.13

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen MTA, Favelyukis S, Nguyen AK et al (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292. doi:10.1074/jbc.M706762200

    Article  CAS  PubMed  Google Scholar 

  57. Yang X, Zhang X, Heckmann BL et al (2011) Relative contribution of adipose triglyceride lipase and hormone-sensitive lipase to tumor necrosis factor-alpha (TNF-alpha)-induced lipolysis in adipocytes. J Biol Chem 286:40477–40485. doi:10.1074/jbc.M111.257923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reynisdottir S, Langin D, Carlstrom K et al (1995) Effects of weight reduction on the regulation of lipolysis in adipocytes of women with upper-body obesity. Clin Sci (Lond) 89:421–429

    Article  CAS  Google Scholar 

  59. Dewulf EM, Cani PD, Neyrinck AM et al (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARg-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22:712–722. doi:10.1016/j.jnutbio.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  60. Jump DB (2004) Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci 41:41–78. doi:10.1080/10408360490278341

    Article  CAS  PubMed  Google Scholar 

  61. Boden G (2008) Obesity and free fatty acids. Endocrinol Metab Clin North Am 37:635–646. doi:10.1016/j.ecl.2008.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hara T, Kashihara D, Ichimura A et al (2014) Role of free fatty acid receptors in the regulation of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 1841:1292–1300. doi:10.1016/j.bbalip.2014.06.002

    Article  CAS  Google Scholar 

  63. Oh DY, Talukdar S, Bae EJ et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698. doi:10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Williams-Bey Y, Boularan C, Vural A et al (2014) Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS One 9:1–8. doi:10.1371/journal.pone.0097957

    Article  CAS  Google Scholar 

  65. Dandona P, Aljada A, Ghanim H et al (2004) Increased plasma concentration of macrophage migration inhibitory factor (MIF) and MIF mRNA in mononuclear cells in the obese and the suppressive action of metformin. J Clin Endocrinol Metab 89:5043–5047. doi:10.1210/jc.2004-0436

    Article  CAS  PubMed  Google Scholar 

  66. Briscoe CP, Tadayyon M, Andrews JL et al (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311. doi:10.1074/jbc.M211495200

    Article  CAS  PubMed  Google Scholar 

  67. Hirasawa A, Tsumaya K, Awaji T et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94. doi:10.1038/nm1168

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Wu X, Simonavicius N et al (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281:34457–34464. doi:10.1074/jbc.M608019200

    Article  CAS  PubMed  Google Scholar 

  69. Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319. doi:10.1074/jbc.M211609200

    Article  CAS  PubMed  Google Scholar 

  70. Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47:348–380. doi:10.1016/j.plipres.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  71. Karpe F, Dickmann JR, Frayn KN (2011) Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60:2441–2449. doi:10.2337/db11-0425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mittendorfer B, Magkos F, Fabbrini E et al (2009) Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity (Silver Spring) 17:1872–1877. doi:10.1038/oby.2009.224

    Article  CAS  Google Scholar 

  73. Lins TC, Pires AS, Paula RS et al (2012) Association of serum lipid components and obesity with genetic ancestry in an admixed population of elderly women. Genet Mol Biol 35:575–582. doi:10.1590/S1415-47572012005000047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van der Merwe MT, Wing JR, Celgow LH et al (1996) Metabolic indices in relation to body composition changes during weight loss on dexfenfluramine in obese women from two South African ethnic groups. Int J Obes Relat Metab Disord 20:768–776

    PubMed  Google Scholar 

  75. Fugmann M, Uhl O, Hellmuth C et al (2015) Differences in the serum nonesterified fatty acid profile of young women associated with a recent history of gestational diabetes and overweight/obesity. PLoS One 10:e0128001. doi:10.1371/journal.pone.0128001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439. doi:10.1002/biot.200600012

    Article  CAS  PubMed  Google Scholar 

  77. Calder PC (2011) Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol 668:S50–S58. doi:10.1016/j.ejphar.2011.05.085

    Article  CAS  PubMed  Google Scholar 

  78. Chan P-C, Hsiao F-C, Chang H-M et al (2016) Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. FASEB J. doi:10.1096/fj.201500127

    Google Scholar 

  79. Luan B, Yoon Y-S, Le Lay J et al (2015) CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci USA 112:15642–15647. doi:10.1073/pnas.1519644112

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yanez R, Oviedo A, Aldea M et al (2010) Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res 316:3109–3123. doi:10.1016/j.yexcr.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Chen LY, Sokolowska M et al (2014) The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A2 via GPR120 receptor to produce prostaglandin E2 and plays an anti-inflammatory role in macrophages. Immunology 143:81–95. doi:10.1111/imm.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ricciotti E, FitzGerald GA (2012) Prostaglandins and inflammation. Arter Thromb Vasc Biol 31:986–1000. doi:10.1161/ATVBAHA.110.207449

    Article  CAS  Google Scholar 

  83. Brown MD, Sacks DB (2009) Protein scaffolds in MAP kinase signalling. Cell Signal 21:462–469. doi:10.1016/j.cellsig.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  84. Sakurai H, Miyoshi H, Mizukami J, Sugita T (2000) Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB 1. FEBS Lett 474:141–145. doi:10.1016/S0014-5793(00)01588-X

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki M, Takaishi S, Nagasaki M et al (2013) Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem 288:10684–10691. doi:10.1074/jbc.M112.420042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lattin JE, Schroder K, Su AI et al (2008) Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:1–13. doi:10.1186/1745-7580-4-5

    Article  CAS  Google Scholar 

  87. Pivovarova O, Hornemann S, Weimer S et al (2015) Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans. Peptides 65:12–19. doi:10.1016/j.peptides.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  88. Le Poul E, Loison C, Struyf S et al (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489. doi:10.1074/jbc.M301403200

    Article  PubMed  CAS  Google Scholar 

  89. Hong YH, Nishimura Y, Hishikawa D et al (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146:5092–5099. doi:10.1210/en.2005-0545

    Article  CAS  PubMed  Google Scholar 

  90. Roy CC, Kien CL, Bouthillier L, Levy E (2006) Short-chain fatty acids: ready for prime time? NCP Nutr Clin Pract 21:351–366

    Article  PubMed  Google Scholar 

  91. den Besten G, van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. doi:10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  92. Lin HV, Frassetto A, Kowalik EJ et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7:1–9. doi:10.1371/journal.pone.0035240

    Google Scholar 

  93. Puddu A, Sanguineti R, Montecucco F, Viviani GL (2014) Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm 2014:162021. doi:10.1155/2014/162021

    PubMed  PubMed Central  Google Scholar 

  94. Jakobsdottir G, Xu J, Molin G et al (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8:1–15. doi:10.1371/journal.pone.0080476

    Article  CAS  Google Scholar 

  95. Maslowski KM, Vieira AT, Ng A, Kranich J et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286. doi:10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cox MA, Jackson J, Stanton M et al (2009) Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines. World J Gastroenterol 15:5549–5557. doi:10.3748/wjg.15.5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Remely M, Aumueller E, Merold C et al (2014) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537:85–92. doi:10.1016/j.gene.2013.11.081

    Article  CAS  PubMed  Google Scholar 

  98. Canani RB, Di Costanzo M, Leone L et al (2011) Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev 24:198–205

    Article  CAS  PubMed  Google Scholar 

  99. Kimura I, Ozawa K, Inoue D et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. doi:10.1038/ncomms2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bjursell M, Admyre T, Göransson M et al (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300(1):E211–E220. doi:10.1152/ajpendo.00229.2010

    Article  CAS  PubMed  Google Scholar 

  101. Feng DD, Luo Z, Roh S-G et al (2006) Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta-cells by linoleic acids. Endocrinology 147:674–682. doi:10.1210/en.2005-0225

    Article  CAS  PubMed  Google Scholar 

  102. Itoh Y, Kawamata Y, Harada M et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422(6928):173–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Warren Antonio Vieira was funded by the Faculty of Medicine and Health Sciences, Stellenbosch University. Hanél Sadie-Van Gijsen and William Ferris are funded by the South African Medical Research Council and the South African National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Frank Ferris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, W.A., Sadie-Van Gijsen, H. & Ferris, W.F. Free fatty acid G-protein coupled receptor signaling in M1 skewed white adipose tissue macrophages. Cell. Mol. Life Sci. 73, 3665–3676 (2016). https://doi.org/10.1007/s00018-016-2263-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2263-5

Keywords

Navigation