Skip to main content

Advertisement

Log in

Alzheimer’s disease risk factor lymphocyte-specific protein tyrosine kinase regulates long-term synaptic strengthening, spatial learning and memory

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The lymphocyte-specific protein tyrosine kinase (Lck), which belongs to the Src kinase-family, is expressed in neurons of the hippocampus, a structure critical for learning and memory. Recent evidence demonstrated a significant downregulation of Lck in Alzheimer’s disease. Lck has additionally been proposed to be a risk factor for Alzheimer’s disease, thus suggesting the involvement of Lck in memory function. The neuronal role of Lck, however, and its involvement in learning and memory remain largely unexplored. Here, in vitro electrophysiology, confocal microscopy, and molecular, pharmacological, genetic and biochemical techniques were combined with in vivo behavioral approaches to examine the role of Lck in the mouse hippocampus. Specific pharmacological inhibition and genetic silencing indicated the involvement of Lck in the regulation of neuritic outgrowth. In the functional pre-established synaptic networks that were examined electrophysiologically, specific Lck-inhibition also selectively impaired the long-term hippocampal synaptic plasticity without affecting spontaneous excitatory synaptic transmission or short-term synaptic potentiation. The selective inhibition of Lck also significantly altered hippocampus-dependent spatial learning and memory in vivo. These data provide the basis for the functional characterization of brain Lck, describing the importance of Lck as a critical regulator of both neuronal morphology and in vivo long-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brugge JS, Erikson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269:346–348

    Article  PubMed  CAS  Google Scholar 

  2. Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572

    Article  PubMed  CAS  Google Scholar 

  3. Benati D, Baldari CT (2008) SRC family kinases as potential therapeutic targets for malignancies and immunological disorders. Curr Med Chem 15:1154–1165

    Article  PubMed  CAS  Google Scholar 

  4. Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  5. Scales TM, Derkinderen P, Leung KY, Byers HL, Ward MA, Price C, Bird IN, Perera T, Kellie S, Williamson R, Anderton BH, Reynolds CH (2011) Tyrosine phosphorylation of tau by the SRC family kinases lck and fyn. Mol Neurodegener 6:12

    Article  PubMed  CAS  Google Scholar 

  6. Fenster CP, Chisnell HK, Fry CR, Fenster SD (2010) The role of CD4-dependent signaling in interleukin-16 induced c-Fos expression and facilitation of neurite outgrowth in cerebellar granule neurons. Neurosci Lett 485:212–216

    Article  PubMed  CAS  Google Scholar 

  7. Liu G, Beggs H, Jurgensen C, Park HT, Tang H, Gorski J, Jones KR, Reichardt LF, Wu J, Rao Y (2004) Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat Neurosci 7:1222–1232

    Article  PubMed  CAS  Google Scholar 

  8. Lu YM, Roder JC, Davidow J, Salter MW (1998) Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279:1363–1367

    Article  PubMed  CAS  Google Scholar 

  9. Salter MW (1998) Src, N-methyl-d-aspartate (NMDA) receptors, and synaptic plasticity. Biochem Pharmacol 56:789–798

    Article  PubMed  CAS  Google Scholar 

  10. Ali DW, Salter MW (2001) NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 11:336–342

    Article  PubMed  CAS  Google Scholar 

  11. Morita A, Yamashita N, Sasaki Y, Uchida Y, Nakajima O, Nakamura F, Yagi T, Taniguchi M, Usui H, Katoh-Semba R, Takei K, Goshima Y (2006) Regulation of dendritic branching and spine maturation by semaphorin3A-Fyn signaling. J Neurosci 26:2971–2980

    Article  PubMed  CAS  Google Scholar 

  12. Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903–1910

    Article  PubMed  CAS  Google Scholar 

  13. Miyakawa T, Yagi T, Kitazawa H, Yasuda M, Kawai N, Tsuboi K, Niki H (1997) Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 278:698–701

    Article  PubMed  CAS  Google Scholar 

  14. Chin J, Palop JJ, Puolivali J, Massaro C, Bien-Ly N, Gerstein H, Scearce-Levie K, Masliah E, Mucke L (2005) Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci 25:9694–9703

    Article  PubMed  CAS  Google Scholar 

  15. Hunter T (1987) A thousand and one protein kinases. Cell 50:823–829

    Article  PubMed  CAS  Google Scholar 

  16. Cotton PC, Brugge JS (1983) Neural tissues express high levels of the cellular src gene product pp 60c-src. Mol Cell Biol 3:1157–1162

    PubMed  CAS  Google Scholar 

  17. Umemori H, Ogura H, Tozawa N, Mikoshiba K, Nishizumi H, Yamamoto T (2003) Impairment of N-methyl-d-aspartate receptor-controlled motor activity in LYN-deficient mice. Neuroscience 118:709–713

    Article  PubMed  CAS  Google Scholar 

  18. Sudol M, Hanafusa H (1986) Cellular proteins homologous to the viral yes gene product. Mol Cell Biol 6:2839–2846

    PubMed  CAS  Google Scholar 

  19. Hata R, Masumura M, Akatsu H, Li F, Fujita H, Nagai Y, Yamamoto T, Okada H, Kosaka K, Sakanaka M, Sawada T (2001) Up-regulation of calcineurin Abeta mRNA in the Alzheimer’s disease brain: assessment by cDNA microarray. Biochem Biophys Res Commun 284:310–316

    Article  PubMed  CAS  Google Scholar 

  20. Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, Perry RT, Collins JS, Harrell LE, Go RC, Mahoney A, Beaty T, Fallin MD, Avramopoulos D, Chase GA, Folstein MF, McInnis MG, Bassett SS, Doheny KJ, Pugh EW, Tanzi RE (2003) Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet 12:23–32

    Article  PubMed  CAS  Google Scholar 

  21. Zhong W, Yamagata HD, Taguchi K, Akatsu H, Kamino K, Yamamoto T, Kosaka K, Takeda M, Kondo I, Miki T (2005) Lymphocyte-specific protein tyrosine kinase is a novel risk gene for Alzheimer disease. J Neurol Sci 238:53–57

    Article  PubMed  CAS  Google Scholar 

  22. Omri B, Crisanti P, Marty MC, Alliot F, Fagard R, Molina T, Pessac B (1996) The Lck tyrosine kinase is expressed in brain neurons. J Neurochem 67:1360–1364

    Article  PubMed  CAS  Google Scholar 

  23. Glaichenhaus N, Shastri N, Littman DR, Turner JM (1991) Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64:511–520

    Article  PubMed  CAS  Google Scholar 

  24. Veillette A, Davidson D (1992) Src-related protein tyrosine kinases and T-cell receptor signalling. Trends Genet 8:61–66

    PubMed  CAS  Google Scholar 

  25. Mustelin T, Burn P (1993) Regulation of src family tyrosine kinases in lymphocytes. Trends Biochem Sci 18:215–220

    Article  PubMed  CAS  Google Scholar 

  26. Nunez J (2008) Primary culture of hippocampal neurons from P0 newborn rats. J Vis Exp 19:895

    Google Scholar 

  27. Zeitelhofer M, Vessey JP, Xie Y, Tubing F, Thomas S, Kiebler M, Dahm R (2007) High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc 2:1692–1704

    Article  PubMed  CAS  Google Scholar 

  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  29. Kawabe H, Neeb A, Dimova K, Young SM Jr, Takeda M, Katsurabayashi S, Mitkovski M, Malakhova OA, Zhang DE, Umikawa M, Kariya K, Goebbels S, Nave KA, Rosenmund C, Jahn O, Rhee J, Brose N (2010) Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 65:358–372

    Article  PubMed  CAS  Google Scholar 

  30. Shirasu M, Kimura K, Kataoka M, Takahashi M, Okajima S, Kawaguchi S, Hirasawa Y, Ide C, Mizoguchi A (2000) VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells. Neurosci Res 37:265–275

    Article  PubMed  CAS  Google Scholar 

  31. Slimko EM, McKinney S, Anderson DJ, Davidson N, Lester HA (2002) Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J Neurosci 22:7373–7379

    PubMed  CAS  Google Scholar 

  32. Fan G, Simmons MJ, Ge S, Dutta-Simmons J, Kucharczak J, Ron Y, Weissmann D, Chen CC, Mukherjee C, White E, Gelinas C (2010) Defective ubiquitin-mediated degradation of antiapoptotic Bfl-1 predisposes to lymphoma. Blood 115:3559–3569

    Article  PubMed  CAS  Google Scholar 

  33. Monje FJ, Kim EJ, Pollak DD, Cabatic M, Li L, Baston A, Lubec G (2011) Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory. Neurosignals 20:1–14

    Article  PubMed  Google Scholar 

  34. Casey SC, Nelson EL, Turco GM, Janes MR, Fruman DA, Blumberg B (2011) B-1 cell lymphoma in mice lacking the steroid and xenobiotic receptor, SXR. Mol Endocrinol 25:933–943

    Article  PubMed  CAS  Google Scholar 

  35. Levine A, Huang Y, Drisaldi B, Griffin EA Jr, Pollak DD, Xu S, Yin D, Schaffran C, Kandel DB, Kandel ER (2011) Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Sci Transl Med 3:107ra109

    Article  PubMed  CAS  Google Scholar 

  36. Simon W, Hapfelmeier G, Kochs E, Zieglgansberger W, Rammes G (2001) Isoflurane blocks synaptic plasticity in the mouse hippocampus. Anesthesiology 94:1058–1065

    Article  PubMed  CAS  Google Scholar 

  37. Rammes G, Starker LK, Haseneder R, Berkmann J, Plack A, Zieglgansberger W, Ohl F, Kochs EF, Blobner M (2009) Isoflurane anaesthesia reversibly improves cognitive function and long-term potentiation (LTP) via an up-regulation in NMDA receptor 2B subunit expression. Neuropharmacology 56:626–636

    Article  PubMed  CAS  Google Scholar 

  38. Nguyen PV, Kandel ER (1997) Brief theta-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn Mem 4:230–243

    Article  PubMed  CAS  Google Scholar 

  39. Malleret G, Alarcon JM, Martel G, Takizawa S, Vronskaya S, Yin D, Chen IZ, Kandel ER, Shumyatsky GP (2010) Bidirectional regulation of hippocampal long-term synaptic plasticity and its influence on opposing forms of memory. J Neurosci 30:3813–3825

    Article  PubMed  CAS  Google Scholar 

  40. Huang YY, Kandel ER (1994) Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem 1:74–82

    PubMed  CAS  Google Scholar 

  41. Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13:222–257

    Article  PubMed  CAS  Google Scholar 

  42. Pollak D, Weitzdoerfer R, Yang YW, Prast H, Hoeger H, Lubec G (2005) Cerebellar protein expression in three different mouse strains and their relevance for motor performance. Neurochem Int 46:19–29

    Article  PubMed  CAS  Google Scholar 

  43. Pollak DD, Scharl T, Leisch F, Herkner K, Villar SR, Hoeger H, Lubec G (2005) Strain-dependent regulation of plasticity-related proteins in the mouse hippocampus. Behav Brain Res 165:240–246

    Article  PubMed  CAS  Google Scholar 

  44. Rouer E (2010) Neuronal isoforms of Src, Fyn and Lck tyrosine kinases: A specific role for p56lckN in neuron protection. CR Biol 333:1–10

    Article  CAS  Google Scholar 

  45. Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B (2003) The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev 191:107–118

    Article  PubMed  CAS  Google Scholar 

  46. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  47. Kandel ER, Schwartz JH (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433–443

    Article  PubMed  CAS  Google Scholar 

  48. Faltynek CR, Schroeder J, Mauvais P, Miller D, Wang S, Murphy D, Lehr R, Kelley M, Maycock A, Michne W et al (1995) Damnacanthal is a highly potent, selective inhibitor of p56lck tyrosine kinase activity. Biochemistry 34:12404–12410

    Article  PubMed  CAS  Google Scholar 

  49. Faltynek CR, Wang S, Miller D, Mauvais P, Gauvin B, Reid J, Xie W, Hoekstra S, Juniewicz P, Sarup J et al (1995) Inhibition of T lymphocyte activation by a novel p56lck tyrosine kinase inhibitor. J Enzyme Inhib 9:111–122

    Article  PubMed  CAS  Google Scholar 

  50. Toth A, Szilagyi O, Krasznai Z, Panyi G, Hajdu P (2009) Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse. Immunol Lett 125:15–21

    Article  PubMed  CAS  Google Scholar 

  51. Phillippe M, Sweet LM, Bradley DF, Engle D (2009) Role of nonreceptor protein tyrosine kinases during phospholipase C-gamma 1-related uterine contractions in the rat. Reprod Sci 16:265–273

    Article  PubMed  CAS  Google Scholar 

  52. Inngjerdingen M, Torgersen KM, Maghazachi AA (2002) Lck is required for stromal cell-derived factor 1 alpha (CXCL12)-induced lymphoid cell chemotaxis. Blood 99:4318–4325

    Article  PubMed  CAS  Google Scholar 

  53. Yao Z, Zhang J, Dai J, Keller ET (2001) Ethanol activates NFkappaB DNA binding and p56lck protein tyrosine kinase in human osteoblast-like cells. Bone 28:167–173

    Article  PubMed  CAS  Google Scholar 

  54. Aoki K, Parent A, Zhang J (2000) Mechanism of damnacanthal-induced [Ca(2 +)](i) elevation in human dermal fibroblasts. Eur J Pharmacol 387:119–124

    Article  PubMed  CAS  Google Scholar 

  55. Von Knethen A, Abts H, Kube D, Diehl V, Tesch H (1997) Expression of p56lck in B-cell neoplasias. Leuk Lymphoma 26:551–562

    Google Scholar 

  56. Wu Y, Sheng W, Chen L, Dong H, Lee V, Lu F, Wong CS, Lu WY, Yang BB (2004) Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell 15:2093–2104

    Article  PubMed  CAS  Google Scholar 

  57. Arthur DB, Akassoglou K, Insel PA (2006) P2Y2 and TrkA receptors interact with Src family kinase for neuronal differentiation. Biochem Biophys Res Commun 347:678–682

    Article  PubMed  CAS  Google Scholar 

  58. Theus MH, Wei L, Francis K, Yu SP (2006) Critical roles of Src family tyrosine kinases in excitatory neuronal differentiation of cultured embryonic stem cells. Exp Cell Res 312:3096–3107

    Article  PubMed  CAS  Google Scholar 

  59. Creager R, Dunwiddie T, Lynch G (1980) Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. J Physiol 299:409–424

    PubMed  CAS  Google Scholar 

  60. Del Castillo J, Katz B (1954) Statistical factors involved in neuromuscular facilitation and depression. J Physiol 124:574–585

    Google Scholar 

  61. Kuhnt U, Voronin LL (1994) Interaction between paired-pulse facilitation and long-term potentiation in area CA1 of guinea-pig hippocampal slices: application of quantal analysis. Neuroscience 62:391–397

    Article  PubMed  CAS  Google Scholar 

  62. Voronin LL (1994) Quantal analysis of hippocampal long-term potentiation. Rev Neurosci 5:141–170

    PubMed  CAS  Google Scholar 

  63. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

  64. Szczot M, Wojtowicz T, Mozrzymas JW (2010) GABAergic and glutamatergic currents in hippocampal slices and neuronal cultures show profound differences: a clue to a potent homeostatic modulation. J Physiol Pharmacol 61:501–506

    PubMed  CAS  Google Scholar 

  65. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    Article  PubMed  Google Scholar 

  66. Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111(Pt 21):3167–3177

    PubMed  CAS  Google Scholar 

  67. Bhaskar K, Yen SH, Lee G (2005) Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 280:35119–35125

    Article  PubMed  CAS  Google Scholar 

  68. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann NY Acad Sci 1144:97–112

    Article  PubMed  CAS  Google Scholar 

  69. MacDonald JF, Jackson MF, Beazely MA (2006) Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 18:71–84

    Article  PubMed  CAS  Google Scholar 

  70. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    Article  PubMed  CAS  Google Scholar 

  71. Tonegawa S, Tsien JZ, McHugh TJ, Huerta P, Blum KI, Wilson MA (1996) Hippocampal CA1-region-restricted knockout of NMDAR1 gene disrupts synaptic plasticity, place fields, and spatial learning. Cold Spring Harb Symp Quant Biol 61:225–238

    Article  PubMed  CAS  Google Scholar 

  72. Campioni MR, Xu M, McGehee DS (2009) Stress-induced changes in nucleus accumbens glutamate synaptic plasticity. J Neurophysiol 101:3192–3198

    Article  PubMed  CAS  Google Scholar 

  73. Kim J, Jung SY, Lee YK, Park S, Choi JS, Lee CJ, Kim HS, Choi YB, Scheiffele P, Bailey CH, Kandel ER, Kim JH (2008) Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proc Natl Acad Sci USA 105:9087–9092

    Article  PubMed  CAS  Google Scholar 

  74. Nakayama K, Kiyosue K, Taguchi T (2005) Diminished neuronal activity increases neuron–neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses. J Neurosci 25:4040–4051

    Article  PubMed  CAS  Google Scholar 

  75. Van Sickle BJ, Xiang K, Tietz EI (2004) Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal-anxiety. Neuropsychopharmacology 29:1994–2006

    Article  PubMed  Google Scholar 

  76. Wyllie DJ, Manabe T, Nicoll RA (1994) A rise in postsynaptic Ca2+ potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons. Neuron 12:127–138

    Article  PubMed  CAS  Google Scholar 

  77. Yu XM, Askalan R, Keil GJ 2nd, Salter MW (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275:674–678

    Article  PubMed  CAS  Google Scholar 

  78. Hayashi T, Umemori H, Mishina M, Yamamoto T (1999) The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397:72–76

    Article  PubMed  CAS  Google Scholar 

  79. Yaka R, Phamluong K, Ron D (2003) Scaffolding of Fyn kinase to the NMDA receptor determines brain region sensitivity to ethanol. J Neurosci 23:3623–3632

    PubMed  CAS  Google Scholar 

  80. Kim JI, Lee HR, Sim SE, Baek J, Yu NK, Choi JH, Ko HG, Lee YS, Park SW, Kwak C, Ahn SJ, Choi SY, Kim H, Kim KH, Backx PH, Bradley CA, Kim E, Jang DJ, Lee K, Kim SJ, Zhuo M, Collingridge GL, Kaang BK (2011) PI3Kgamma is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci 14:1447–1454

    Article  PubMed  CAS  Google Scholar 

  81. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron 53:261–277

    Article  PubMed  CAS  Google Scholar 

  82. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145

    Article  PubMed  CAS  Google Scholar 

  83. Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR, Sejnowski TJ, Tuszynski MH (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 29:10883–10889

    Article  PubMed  CAS  Google Scholar 

  84. Xu B, Gottschalk W, Chow A, Wilson RI, Schnell E, Zang K, Wang D, Nicoll RA, Lu B, Reichardt LF (2000) The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J Neurosci 20:6888–6897

    PubMed  CAS  Google Scholar 

  85. Monje FJ, Kassabov S, Fiumara F, Bailey CH, Kandel ER (2008) A novel leucine-rich-repeat tyrosine-kinase promotes growth factor signaling, neuritic outgrowth and long-term facilitation in aplysia. FENS Abstr 4(079):15

    Google Scholar 

Download references

Acknowledgments

We thank Ing. Reiner Poldi, the NPI Company and Dr. Gerhard Rammes for expert support during the implementation of the electrophysiological techniques. F.J.M. received financial support from the Hochschul-Jubiläum-Stiftung der Stadt Wien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Lubec.

Additional information

E.-J. Kim and F. J. Monje equally shared authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, EJ., Monje, F.J., Li, L. et al. Alzheimer’s disease risk factor lymphocyte-specific protein tyrosine kinase regulates long-term synaptic strengthening, spatial learning and memory. Cell. Mol. Life Sci. 70, 743–759 (2013). https://doi.org/10.1007/s00018-012-1168-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1168-1

Keywords

Navigation