Skip to main content

Advertisement

Log in

Recent progress in intein research: from mechanism to directed evolution and applications

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    PubMed  CAS  Google Scholar 

  2. Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657

    Article  PubMed  CAS  Google Scholar 

  3. Perler FB (1998) Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92:1–4

    Article  PubMed  CAS  Google Scholar 

  4. Liu XQ (2000) Protein-splicing intein: genetic mobility, origin, and evolution. Annu Rev Genet 34:61–76

    Article  PubMed  CAS  Google Scholar 

  5. Pietrokovski S (2001) Intein spread and extinction in evolution. Trends Genet 17:465–472

    Article  PubMed  CAS  Google Scholar 

  6. Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Annu Rev Microbiol 56:263–287

    Article  PubMed  CAS  Google Scholar 

  7. Perler FB (2002) InBase: the intein database. Nucleic Acids Res 30:383–384

    Article  PubMed  CAS  Google Scholar 

  8. Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91:85–97

    Article  PubMed  CAS  Google Scholar 

  9. Dassa B, Haviv H, Amitai G, Pietrokovski S (2004) Protein splicing and auto-cleavage of bacterial intein-like domains lacking a C′-flanking nucleophilic residue. J Biol Chem 279:32001–32007

    Article  PubMed  CAS  Google Scholar 

  10. Dassa B, Yanai I, Pietrokovski S (2004) New type of polyubiquitin-like genes with intein-like autoprocessing domains. Trends Genet 20:538–542

    Article  PubMed  CAS  Google Scholar 

  11. Perler FB, Olsen GJ, Adam E (1997) Compilation and analysis of intein sequences. Nucleic Acids Res 25:1087–1093

    Article  PubMed  CAS  Google Scholar 

  12. Tori K, Dassa B, Johnson MA, Southworth MW, Brace LE, Ishino Y, Pietrokovski S, Perler FB (2010) Splicing of the mycobacteriophage Bethlehem DnaB intein: identification of a new mechanistic class of inteins that contain an obligate block F nucleophile. J Biol Chem 285:2515–2526

    Article  PubMed  CAS  Google Scholar 

  13. Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chem Bio Chem 10:2579–2589

    Article  PubMed  CAS  Google Scholar 

  14. Elleuche S, Poggeler S (2010) Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 87:479–489

    Article  PubMed  CAS  Google Scholar 

  15. Vila-Perello M, Muir TW (2010) Biological applications of protein splicing. Cell 143:191–200

    Article  PubMed  CAS  Google Scholar 

  16. Volkmann G, Iwaï H (2010) Protein trans-splicing and its use in structural biology: opportunities and limitations. Mol Biosys 6:2110–2121

    Article  CAS  Google Scholar 

  17. Aranko AS, Volkmann G (2011) Protein trans-splicing as a protein ligation tool to study protein structure and function. Biomol Concepts 2:183–198

    Article  Google Scholar 

  18. Shah NH, Muir TW (2011) Split inteins: nature’s protein ligases. Isr J Chem 51:854–861

    Article  CAS  Google Scholar 

  19. Cheriyan M, Perler FB (2009) Protein splicing: a versatile tool for drug discovery. Adv Drug Deliv Rev 61:899–907

    Article  PubMed  CAS  Google Scholar 

  20. Sancheti H, Camarero JA (2009) “Splicing up” drug discovery. Cell-based expression and screening of genetically encoded libraries of backbone-cyclized polypeptides. Adv Drug Deliv Rev 61:908–917

    Article  PubMed  CAS  Google Scholar 

  21. Xu MQ, Perler FB (1996) The mechanism of protein splicing and its modulation by mutation. EMBO J 15:5146–5153

    PubMed  CAS  Google Scholar 

  22. Southworth MW, Benner J, Perler FB (2000) An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. EMBO J 19:5019–5026

    Article  PubMed  CAS  Google Scholar 

  23. Saleh L, Southworth MW, Considine N, O’Neill C, Benner J, Bollinger JM Jr, Perler FB (2012) Branched intermediate formation is the slowest step in the protein splicing reaction of the Ala1 KlbA intein from Methanococcus jannaschii. Biochemistry 50:10576–10589

    Article  CAS  Google Scholar 

  24. Johnson MA, Southworth MW, Herrmann T, Brace L, Perler FB, Wuthrich K (2007) NMR structure of a KlbA intein precursor from Methanococcus jannaschii. Protein Sci 16:1316–1328

    Article  PubMed  CAS  Google Scholar 

  25. Brace LE, Southworth MW, Tori K, Cushing ML, Perler F (2010) The Deinococcus radiodurans Snf2 intein caught in the act: detection of the class 3 intein signature block F branched intermediate. Protein Sci 19:1525–1533

    Article  PubMed  CAS  Google Scholar 

  26. Reitter JN, Mills KV (2011) Canonical protein splicing of a class one intein that has a class three non-canonical sequence motif. J Bacteriol 193:994–997

    Article  PubMed  CAS  Google Scholar 

  27. Tori K, Perler FB (2011) Expanding the definition of class 3 inteins and their proposed phage origin. J Bacteriol 193:2035–2041

    Article  PubMed  CAS  Google Scholar 

  28. Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496

    Article  PubMed  CAS  Google Scholar 

  29. Johansson DG, Wallin G, Sandberg A, Macao B, Aqvist J, Hard T (2009) Protein autoproteolysis: conformational strain linked to the rate of peptide cleavage by the pH dependence of the N → O acyl shift reaction. J Am Chem Soc 131:9475–9477

    Article  PubMed  CAS  Google Scholar 

  30. Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378:416–419

    Article  PubMed  CAS  Google Scholar 

  31. Ditzel L, Huber R, Mann K, Heinemeyer W, Wolf DH, Groll M (1998) Conformational constraints for protein self-cleavage in the proteasome. J Mol Biol 279:1187–1191

    Article  PubMed  CAS  Google Scholar 

  32. Kawasaki M, Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Identification of three core regions essential for protein splicing of the yeast Vma1 protozyme. A random mutagenesis study of the entire Vma1-derived endonuclease sequence. J Biol Chem 272:15668–15674

    Article  PubMed  CAS  Google Scholar 

  33. Ghosh I, Sun L, Xu MQ (2001) Zinc inhibition of protein trans-splicing and identification of regions essential for splicing and association of a split intein. J Biol Chem 276:24051–24058

    Article  PubMed  CAS  Google Scholar 

  34. Klabunde T, Sharma S, Telenti A, Jacobs WR Jr, Sacchettini JC (1998) Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol 5:31–36

    Article  PubMed  CAS  Google Scholar 

  35. Poland BW, Xu MQ, Quiocho FA (2000) Structural insights into the protein splicing mechanism of PI-SceI. J Biol Chem 275:16408–16413

    Article  PubMed  CAS  Google Scholar 

  36. Ding Y, Xu MQ, Ghosh I, Chen X, Ferrandon S, Lesage G, Rao Z (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. J Biol Chem 278:39133–39142

    Article  PubMed  CAS  Google Scholar 

  37. Mizutani R, Nogami S, Kawasaki M, Ohya Y, Anraku Y, Satow Y (2002) Protein-splicing reaction via a thiazolidine intermediate: crystal structure of the VMA1-derived endonuclease bearing the N and C-terminal propeptides. J Mol Biol 316:919–929

    Article  PubMed  CAS  Google Scholar 

  38. Sun P, Ye S, Ferrandon S, Evans TC, Xu MQ, Rao Z (2005) Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing. J Mol Biol 353:1093–1105

    Article  PubMed  CAS  Google Scholar 

  39. Van Roey P, Pereira B, Li Z, Hiraga K, Belfort M, Derbyshire V (2007) Crystallographic and mutational studies of Mycobacterium tuberculosis recA mini-inteins suggest a pivotal role for a highly conserved aspartate residue. J Mol Biol 367:162–173

    Article  PubMed  CAS  Google Scholar 

  40. Du Z, Shemella PT, Liu Y, McCallum SA, Pereira B, Nayak SK, Belfort G, Belfort M, Wang C (2009) Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism. J Am Chem Soc 131:11581–11589

    Article  PubMed  CAS  Google Scholar 

  41. Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein–intein junction. Proc Natl Acad Sci USA 101:6397–6402

    Article  PubMed  CAS  Google Scholar 

  42. Pearl EJ, Tyndall JD, Poulter RT, Wilbanks SM (2007) Sequence requirements for splicing by the Cne PRP8 intein. FEBS Lett 581:3000–3004

    Article  PubMed  CAS  Google Scholar 

  43. Du Z, Liu J, Albracht CD, Hsu A, Chen W, Marieni MD, Colelli KM, Williams JE, Reitter JN, Mills KV, Wang C (2011) Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. J Biol Chem 286:38638–38648

    Article  PubMed  CAS  Google Scholar 

  44. Pietrokovski S (1998) Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci 7:64–71

    Article  PubMed  CAS  Google Scholar 

  45. Tori K, Cheriyan M, Pedamallu CS, Contreras MA, Perler FB (2012) The Thermococcus kodakaraensis Tko CDC21-1 intein activates its N-terminal splice junction in the absence of a conserved histidine by a compensatory mechanism. Biochemistry 51:2496–2505

    Article  PubMed  CAS  Google Scholar 

  46. Du Z, Zheng Y, Patterson M, Liu Y, Wang C (2011) pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. J Am Chem Soc 133:10275–10282

    Article  PubMed  CAS  Google Scholar 

  47. Schwarzer D, Ludwig C, Thiel IV, Mootz HD (2012) Probing intein-catalyzed thioester formation by unnatural amino acid substitutions in the active site. Biochemistry 51:233–242

    Article  PubMed  CAS  Google Scholar 

  48. Appleby JH, Zhou K, Volkmann G, Liu XQ (2009) Novel Split Intein for trans-splicing synthetic peptide onto C-terminus of protein. J Biol Chem 284:6194–6199

    Article  PubMed  CAS  Google Scholar 

  49. Volkmann G, Liu XQ (2011) Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity. FEBS J 278:3431–3446

    Article  PubMed  CAS  Google Scholar 

  50. Ludwig C, Schwarzer D, Mootz HD (2008) Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from an intermediate of the protein splicing reaction. J Biol Chem 283:25264–25272

    Article  PubMed  CAS  Google Scholar 

  51. Kang J, Richardson JP, Macmillan D (2009) 3-Mercaptopropionic acid-mediated synthesis of peptide and protein thioesters. Chem Commun (Camb) 407–409

  52. Kang J, Macmillan D (2010) Peptide and protein thioester synthesis via N → S acyl transfer. Org Biomol Chem 8:1993–2002

    Article  PubMed  CAS  Google Scholar 

  53. Kawakami T, Aimoto S (2007) Sequential peptide ligation by using a controlled cysteinyl prolyl ester (CPE) autoactivating unit. Tetrahedron Lett 48:1903–1905

    Article  CAS  Google Scholar 

  54. Pereira B, Shemella PT, Amitai G, Belfort G, Nayak SK, Belfort M (2011) Spontaneous proton transfer to a conserved intein residue determines on-pathway protein splicing. J Mol Biol 406:430–442

    Article  PubMed  CAS  Google Scholar 

  55. Chong S, Williams KS, Wotkowicz C, Xu MQ (1998) Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem 273:10567–10577

    Article  PubMed  CAS  Google Scholar 

  56. Martin DD, Xu MQ, Evans TC Jr (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40:1393–1402

    Article  PubMed  CAS  Google Scholar 

  57. Zettler J, Schutz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583:909–914

    Article  PubMed  CAS  Google Scholar 

  58. Frutos S, Goger M, Giovani B, Cowburn D, Muir TW (2010) Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Nat Chem Biol 6:527–533

    Article  PubMed  CAS  Google Scholar 

  59. Xu MQ, Comb DG, Paulus H, Noren CJ, Shao Y, Perler FB (1994) Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J 13:5517–5522

    PubMed  CAS  Google Scholar 

  60. Shao Y, Xu MQ, Paulus H (1995) Protein splicing: characterization of the aminosuccinimide residue at the carboxyl terminus of the excised intervening sequence. Biochemistry 34:10844–10850

    Article  PubMed  CAS  Google Scholar 

  61. Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264:6164–6170

    PubMed  CAS  Google Scholar 

  62. Shemella P, Pereira B, Zhang Y, Van Roey P, Belfort G, Garde S, Nayak SK (2007) Mechanism for intein C-terminal cleavage: a proposal from quantum mechanical calculations. Biophys J 92:847–853

    Article  PubMed  CAS  Google Scholar 

  63. Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M (1999) A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol 17:889–892

    Article  PubMed  CAS  Google Scholar 

  64. Mathys S, Evans TC, Chute IC, Wu H, Chong S, Benner J, Liu XQ, Xu MQ (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231:1–13

    Article  PubMed  CAS  Google Scholar 

  65. Wood DW, Derbyshire V, Wu W, Chartrain M, Belfort M, Belfort G (2000) Optimized single-step affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor. Biotechnol Prog 16:1055–1063

    Article  PubMed  CAS  Google Scholar 

  66. Mujika JI, Lopez X, Mulholland AJ (2009) Modeling protein splicing: reaction pathway for C-terminal splice and intein scission. J Phys Chem B 113:5607–5616

    Article  PubMed  CAS  Google Scholar 

  67. Kurpiers T, Mootz HD (2008) Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein. ChemBioChem 9:2317–2325

    Article  PubMed  CAS  Google Scholar 

  68. Shao Y, Paulus H (1997) Protein splicing: estimation of the rate of O–N and S–N acyl rearrangements, the last step of the splicing process. J Pept Res 50:193–198

    Article  PubMed  CAS  Google Scholar 

  69. Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M (2009) Modulation of intein activity by its neighboring extein substrates. Proc Natl Acad Sci USA 106:11005–11010

    Article  PubMed  CAS  Google Scholar 

  70. Ellila S, Jurvansuu JM, Iwai H (2011) Evaluation and comparison of protein splicing by exogenous inteins with foreign exteins in Escherichia coli. FEBS Lett 585:3471–3477

    Article  PubMed  CAS  Google Scholar 

  71. Shah NH, Dann GP, Vila-Perello M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134(28):11338–11341

    Article  PubMed  CAS  Google Scholar 

  72. Øemig JS, Zhou D, Kajander T, Wlodawer A, Iwai H (2012) NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J Mol Biol 421(1):85–99

    Article  CAS  Google Scholar 

  73. Adam E, Perler FB (2002) Development of a positive genetic selection system for inhibition of protein splicing using mycobacterial inteins in Escherichia coli DNA gyrase subunit A. J Mol Microbiol Biotechnol 4:479–487

    PubMed  CAS  Google Scholar 

  74. Cann IK, Amaya KR, Southworth MW, Perler FB (2004) Bacteriophage-based genetic system for selection of nonsplicing inteins. Appl Environ Microbiol 70:3158–3162

    Article  PubMed  CAS  Google Scholar 

  75. Zeidler MP, Tan C, Bellaiche Y, Cherry S, Hader S, Gayko U, Perrimon N (2004) Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol 22:871–876

    Article  PubMed  CAS  Google Scholar 

  76. Tan G, Chen M, Foote C, Tan C (2009) Temperature-sensitive mutations made easy: generating conditional mutations by using temperature-sensitive inteins that function within different temperature ranges. Genetics 183:13–22

    Article  PubMed  CAS  Google Scholar 

  77. Hiraga K, Soga I, Dansereau JT, Pereira B, Derbyshire V, Du Z, Wang C, Van Roey P, Belfort G, Belfort M (2009) Selection and structure of hyperactive inteins: peripheral changes relayed to the catalytic center. J Mol Biol 393:1106–1117

    Article  PubMed  CAS  Google Scholar 

  78. Hiraga K, Derbyshire V, Dansereau JT, Van Roey P, Belfort M (2005) Minimization and stabilization of the Mycobacterium tuberculosis recA intein. J Mol Biol 354:916–926

    Article  PubMed  CAS  Google Scholar 

  79. Lockless SW, Muir TW (2009) Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci USA 106:10999–11004

    Article  PubMed  CAS  Google Scholar 

  80. Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci USA 101:10505–10510

    Article  PubMed  CAS  Google Scholar 

  81. Wu H, Xu MQ, Liu XQ (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta 1387:422–432

    Article  PubMed  CAS  Google Scholar 

  82. Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286:34440–34447

    Article  PubMed  CAS  Google Scholar 

  83. Du Z, Liu Y, Ban D, Lopez MM, Belfort M, Wang C (2010) Backbone dynamics and global effects of an activating mutation in minimized Mtu RecA inteins. J Mol Biol 400:755–767

    Article  PubMed  CAS  Google Scholar 

  84. Caspi J, Amitai G, Belenkiy O, Pietrokovski S (2003) Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol 50:1569–1577

    Article  PubMed  CAS  Google Scholar 

  85. Iwai H, Züger S, Jin J, Tam PH (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858

    Article  PubMed  CAS  Google Scholar 

  86. Dassa B, Amitai G, Caspi J, Schueler-Furman O, Pietrokovski S (2007) Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry 46:322–330

    Article  PubMed  CAS  Google Scholar 

  87. Peck SH, Chen I, Liu DR (2011) Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol 18:619–630

    Article  PubMed  CAS  Google Scholar 

  88. Skretas G, Wood DW (2005) Regulation of protein activity with small-molecule-controlled inteins. Protein Sci 14:523–532

    Article  PubMed  CAS  Google Scholar 

  89. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710

    Article  PubMed  CAS  Google Scholar 

  90. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  PubMed  CAS  Google Scholar 

  91. Evans TC Jr, Benner J, Xu MQ (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264

    Article  PubMed  CAS  Google Scholar 

  92. Xu MQ, Evans TC Jr (2003) Purification of recombinant proteins from E. coli by engineered inteins. Methods Mol Biol 205:43–68

    PubMed  CAS  Google Scholar 

  93. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    Article  PubMed  CAS  Google Scholar 

  94. Shi J, Muir TW (2005) Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc 127:6198–6206

    Article  PubMed  CAS  Google Scholar 

  95. Lu W, Sun Z, Tang Y, Chen J, Tang F, Zhang J, Liu JN (2011) Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage. J Chromatogr A 1218:2553–2560

    Article  PubMed  CAS  Google Scholar 

  96. Kurpiers T, Mootz HD (2007) Regioselective cysteine bioconjugation by appending a labeled cystein tag to a protein by using protein splicing in trans. Angew Chem Int Ed Engl 46:5234–5237

    Article  PubMed  CAS  Google Scholar 

  97. Brenzel S, Cebi M, Reiss P, Koert U, Mootz HD (2009) Expanding the scope of protein trans-splicing to fragment ligation of an integral membrane protein: towards modulation of porin-based ion channels by chemical modification. ChemBioChem 10:983–986

    Article  PubMed  CAS  Google Scholar 

  98. Ludwig C, Pfeiff M, Linne U, Mootz HD (2006) Ligation of a synthetic peptide to the N-terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew Chem Int Ed Engl 45:5218–5221

    Article  PubMed  CAS  Google Scholar 

  99. Volkmann G, Liu XQ (2009) Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein. PLoS ONE 4:e8381

    Article  PubMed  CAS  Google Scholar 

  100. Yang JY, Yang WY (2009) Site-specific two-color protein labeling for FRET studies using split inteins. J Am Chem Soc 131:11644–11645

    Article  PubMed  CAS  Google Scholar 

  101. Ando T, Tsukiji S, Tanaka T, Nagamune T (2007) Construction of a small-molecule-integrated semisynthetic split intein for in vivo protein ligation. Chem Commun (Camb) 4995–4997

  102. Charalambous A, Andreou M, Skourides PA (2009) Intein-mediated site-specific conjugation of quantum dots to proteins in vivo. J Nanobiotechnol 7:9

    Article  CAS  Google Scholar 

  103. Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2007) Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into cellular membranes. Chem Biol 14:994–1006

    Article  PubMed  CAS  Google Scholar 

  104. Chu NK, Olschewski D, Seidel R, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2010) Protein immobilization on liposomes and lipid-coated nanoparticles by protein trans-splicing. J Pept Sci 16:582–588

    Article  PubMed  CAS  Google Scholar 

  105. Kwon Y, Coleman MA, Camarero JA (2006) Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed Engl 45:1726–1729

    Article  PubMed  CAS  Google Scholar 

  106. Lew BM, Mills KV, Paulus H (1999) Characteristics of protein splicing in trans-mediated by a semisynthetic split intein. Biopolymers 51:355–362

    Article  PubMed  CAS  Google Scholar 

  107. Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094

    Article  PubMed  CAS  Google Scholar 

  108. Øemig JS, Aranko AS, Djupsjöbacka J, Heinämäki K, Iwai H (2009) Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett 583:1451–1456

    Article  CAS  Google Scholar 

  109. Aranko AS, Züger S, Buchinger E, Iwai H (2009) In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS ONE 4:e5185

    Article  PubMed  CAS  Google Scholar 

  110. Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125:7180–7181

    Article  PubMed  CAS  Google Scholar 

  111. Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA (2012) In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 134:6344–6353

    Article  PubMed  CAS  Google Scholar 

  112. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  PubMed  CAS  Google Scholar 

  113. Kanno A, Ozawa T, Umezawa Y (2009) Bioluminescent imaging of MAPK function with intein-mediated reporter gene assay. Methods Mol Biol 574:185–192

    Article  PubMed  CAS  Google Scholar 

  114. Kanno A, Umezawa Y, Ozawa T (2009) Detection of apoptosis using cyclic luciferase in living mammals. Methods Mol Biol 574:105–114

    Article  PubMed  CAS  Google Scholar 

  115. Zhang Y, Yang W, Chen L, Shi Y, Li G, Zhou N (2011) Development of a novel DnaE intein-based assay for quantitative analysis of G-protein-coupled receptor internalization. Anal Biochem 417:65–72

    Article  PubMed  CAS  Google Scholar 

  116. Wong SS, Kotera I, Mills E, Suzuki H, Truong K (2012) Split-intein-mediated re-assembly of genetically encoded Ca(2+) indicators. Cell Calcium 51:57–64

    Article  PubMed  CAS  Google Scholar 

  117. Gils M, Marillonnet S, Werner S, Grutzner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y (2008) A novel hybrid seed system for plants. Plant Biotechnol J 6:226–235

    Article  PubMed  CAS  Google Scholar 

  118. Kempe K, Rubtsova M, Gils M (2009) Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. Plant Biotechnol J 7:283–297

    Article  PubMed  CAS  Google Scholar 

  119. Chin HG, Kim GD, Marin I, Mersha F, Evans TC Jr, Chen L, Xu MQ, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA 100:4510–4515

    Article  PubMed  CAS  Google Scholar 

  120. Yuen CM, Rodda SJ, Vokes SA, McMahon AP, Liu DR (2006) Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc 128:8939–8946

    Article  PubMed  CAS  Google Scholar 

  121. Mootz HD, Muir TW (2002) Protein splicing triggered by a small molecule. J Am Chem Soc 124:9044–9045

    Article  PubMed  CAS  Google Scholar 

  122. Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW (2003) Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 125:10561–10569

    Article  PubMed  CAS  Google Scholar 

  123. Mootz HD, Blum ES, Muir TW (2004) Activation of an autoregulated protein kinase by conditional protein splicing. Angew Chem Int Ed Engl 43:5189–5192

    Article  PubMed  CAS  Google Scholar 

  124. Schwartz EC, Saez L, Young MW, Muir TW (2007) Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol 3:50–54

    Article  PubMed  CAS  Google Scholar 

  125. Tyszkiewicz AB, Muir TW (2008) Activation of protein splicing with light in yeast. Nat Methods 5:303–305

    PubMed  CAS  Google Scholar 

  126. Sonntag T, Mootz HD (2011) An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing. Mol BioSyst 7:2031–2039

    Article  PubMed  CAS  Google Scholar 

  127. Berrade L, Kwon Y, Camarero JA (2010) Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. Chem Bio Chem 11:1368–1372

    Article  PubMed  CAS  Google Scholar 

  128. Vila-Perello M, Hori Y, Ribo M, Muir TW (2008) Activation of protein splicing by protease- or light-triggered O to N acyl migration. Angew Chem Int Ed Engl 47:7764–7767

    Article  PubMed  CAS  Google Scholar 

  129. Binschik J, Zettler J, Mootz HD (2011) Photocontrol of protein activity mediated by the cleavage reaction of a split intein. Angew Chem Int Ed Engl 50:3249–3252

    Article  PubMed  CAS  Google Scholar 

  130. Otomo T, Ito N, Kyogoku Y, Yamazaki T (1999) NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38:16040–16044

    Article  PubMed  CAS  Google Scholar 

  131. Brenzel S, Kurpiers T, Mootz HD (2006) Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry 45:1571–1578

    Article  PubMed  CAS  Google Scholar 

  132. Busche AE, Aranko AS, Talebzadeh-Farooji M, Bernhard F, Dötsch V, Iwai H (2009) Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew Chem Int Ed Engl 48:6128–6131

    Article  PubMed  CAS  Google Scholar 

  133. Shah NH, Vila-Perello M, Muir TW (2011) Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl 50:6511–6515

    Article  PubMed  CAS  Google Scholar 

  134. Callahan BP, Topilina NI, Stanger MJ, Van Roey P, Belfort M (2011) Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nat Struct Mol Biol 18:630–633

    Article  PubMed  CAS  Google Scholar 

  135. Perler FB (2005) Protein splicing mechanisms and applications. IUBMB Life 57:469–476

    Article  PubMed  CAS  Google Scholar 

  136. Mills KV, Dorval DM, Lewandowski KT (2005) Kinetic analysis of the individual steps of protein splicing for the Pyrococcus abyssi PolII intein. J Biol Chem 280:2714–2720

    Article  PubMed  CAS  Google Scholar 

  137. Saleh L, Perler FB (2006) Protein splicing in cis and in trans. Chem Rec 6:183–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to those researchers whose work could not be covered in detail due to space limitations and the special focus of this work. We thank all coworkers, past and present, for their contributions to the group’s research. Funding in the Mootz lab was provided by the DFG (grant DFG MO 1073/3-1) and the HFSP (Grant RGP0031/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning D. Mootz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkmann, G., Mootz, H.D. Recent progress in intein research: from mechanism to directed evolution and applications. Cell. Mol. Life Sci. 70, 1185–1206 (2013). https://doi.org/10.1007/s00018-012-1120-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1120-4

Keywords

Navigation