Skip to main content
Log in

How broadly tuned olfactory receptors equally recognize their agonists. Human OR1G1 as a test case

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The molecular features that dominate the binding mode of agonists by a broadly tuned olfactory receptor are analyzed through a joint approach combining cell biology, calcium imaging, and molecular modeling. The odorant/receptor affinities, estimated through statistics accrued during molecular dynamics simulations, are in accordance with the experimental ranking. Although in many systems receptors recognize their target through a network of oriented interactions, such as H-bonding, the binding by broadly tuned olfactory receptors is dominated by non-polar terms. We show how such a feature allows chemicals belonging to different chemical families to similarly activate the receptors through compensations of interactions within the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  2. Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449:468–472

    Article  PubMed  CAS  Google Scholar 

  3. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  4. Sell C (2009) Odor cannot be predicted by molecular shape. Chem Senses 34:181

    Article  PubMed  Google Scholar 

  5. Sell CS (2006) On the unpredictability of odor. Angew Chem Int Ed Engl 45:6254–6261

    Article  PubMed  CAS  Google Scholar 

  6. Triller A, Boulden EA, Churchill A, Hatt H, Englund J, Spehr M, Sell CS (2008) Odorant-receptor interactions and odor percept: a chemical perspective. Chem Biodivers 5:862–886

    Article  PubMed  CAS  Google Scholar 

  7. Sanz G, Schlegel C, Pernollet JC, Briand L (2005) Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism. Chem Senses 30:69–80

    Article  PubMed  CAS  Google Scholar 

  8. Sanz G, Thomas-Danguin T, Hamdani el H, Le Poupon C, Briand L, Pernollet JC, Guichard E, Tromelin A (2008) Relationships between molecular structure and perceived odor quality of ligands for a human olfactory receptor. Chem Senses 33:639–653

    Google Scholar 

  9. Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard WA 3rd (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 99:12622–12627

    Article  PubMed  CAS  Google Scholar 

  10. Singer MS, Shepherd GM (1994) Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor. NeuroReport 5:1297–1300

    Article  PubMed  CAS  Google Scholar 

  11. Singer MS (2000) Analysis of the molecular basis for octanal interactions in the expressed rat 17 olfactory receptor. Chem Senses 25:155–165

    Article  PubMed  CAS  Google Scholar 

  12. Schmiedeberg K, Shirokova E, Weber HP, Schilling B, Meyerhof W, Krautwurst D (2007) Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J Struct Biol 159:400–412

    Article  PubMed  CAS  Google Scholar 

  13. Lai PC, Singer MS, Crasto CJ (2005) Structural activation pathways from dynamic olfactory receptor-odorant interactions. Chem Senses 30:781–792

    Article  PubMed  CAS  Google Scholar 

  14. Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815

    Article  PubMed  CAS  Google Scholar 

  15. Hall SE, Floriano WB, Vaidehi N, Goddard WA 3rd (2004) Predicted 3-D structures for mouse I7 and rat I7 olfactory receptors and comparison of predicted odor recognition profiles with experiment. Chem Senses 29:595–616

    Article  PubMed  CAS  Google Scholar 

  16. Gelis L, Wolf S, Hatt H, Neuhaus EM, Gerwert K (2012) Prediction of a ligand-binding niche within a human olfactory receptor by combining site-directed mutagenesis with dynamic homology modeling. Angew Chem Int Ed Engl 51:1274–1278

    Article  PubMed  CAS  Google Scholar 

  17. Floriano WB, Vaidehi N, Goddard WA 3rd, Singer MS, Shepherd GM (2000) Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc Natl Acad Sci USA 97:10712–10716

    Article  PubMed  CAS  Google Scholar 

  18. Doszczak L, Kraft P, Weber HP, Bertermann R, Triller A, Hatt H, Tacke R (2007) Prediction of perception: probing the hOR17-4 olfactory receptor model with silicon analogues of bourgeonal and lilial. Angew Chem Int Ed Engl 46:3367–3371

    Article  PubMed  CAS  Google Scholar 

  19. Baud O, Etter S, Spreafico M, Bordoli L, Schwede T, Vogel H, Pick H (2011) The mouse eugenol odorant receptor: structural and functional plasticity of a broadly tuned odorant-binding pocket. Biochemistry 50:843–853

    Article  PubMed  CAS  Google Scholar 

  20. Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etievant P, Ronin C (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Senses 30:195–207

    Article  PubMed  CAS  Google Scholar 

  21. Surburg H, Panten J (2006) Common fragrance and flavor materials: preparation, properties and uses. Wiley-VCH, Weinheim

  22. The Good Scent Company, Nonanol (2011). http://www.thegoodscentscompany.com

  23. Danyi S, Degand G, Duez C, Granier B, Maghuin-Rogister G, Scippo ML (2007) Solubilisation and binding characteristics of a recombinant beta2-adrenergic receptor expressed in the membrane of Escherichia coli for the multianalyte detection of beta-agonists and antagonists residues in food-producing animals. Anal Chim Acta 589:159–165

    Article  PubMed  CAS  Google Scholar 

  24. Man O, Gilad Y, Lancet D (2004) Prediction of the odorant-binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:240–254

    Article  PubMed  CAS  Google Scholar 

  25. Abrol R, Bray JK, Goddard WA 3rd (2011) Bihelix: towards de novo structure prediction of an ensemble of G-protein coupled receptor conformations. Proteins 80:505–518

    Google Scholar 

  26. Abrol R, Kim SK, Bray JK, Griffith AR, Goddard WA 3rd (2011) Characterizing and predicting the functional and conformational diversity of seven-transmembrane proteins. Methods 55:405–414

    Article  PubMed  CAS  Google Scholar 

  27. Hummel P, Vaidehi N, Floriano WB, Hall SE, Goddard WA 3rd (2005) Test of the Binding Threshold Hypothesis for olfactory receptors: explanation of the differential binding of ketones to the mouse and human orthologs of olfactory receptor 912–93. Protein Sci 14:703–710

    Article  PubMed  CAS  Google Scholar 

  28. Efremov RG, Chugunov AO, Pyrkov TV, Priestle JP, Arseniev AS, Jacoby E (2007) Molecular lipophilicity in protein modeling and drug design. Curr Med Chem 14:393–415

    Article  PubMed  CAS  Google Scholar 

  29. Pyrkov TV, Chugunov AO, Krylov NA, Nolde DE, Efremov RG (2009) PLATINUM: a Web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25:1201–1202

    Article  PubMed  CAS  Google Scholar 

  30. Charlier L, Nespoulous C, Fiorucci S, Antonczak S, Golebiowski J (2007) Binding free energy prediction in strongly hydrophobic biomolecular systems. Phys Chem Chem Phys 9:5761–5771

    Article  PubMed  CAS  Google Scholar 

  31. Golebiowski J, Antonczak S, Fiorucci S, Cabrol-Bass D (2007) Mechanistic events underlying odorant-binding protein chemoreception. Proteins 67:448–458

    Article  PubMed  CAS  Google Scholar 

  32. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  PubMed  CAS  Google Scholar 

  33. Vincent F, Spinelli S, Ramoni R, Grolli S, Pelosi P, Cambillau C, Tegoni M (2000) Complexes of porcine odorant-binding protein with odorant molecules belonging to different chemical classes. J Mol Biol 300:127–139

    Article  PubMed  CAS  Google Scholar 

  34. Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ (2011) Multiple ligand-specific conformations of the beta2-adrenergic receptor. Nat Chem Biol 7:692–700

    Article  PubMed  CAS  Google Scholar 

  35. Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255

    Article  PubMed  CAS  Google Scholar 

  36. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE (2011) Activation mechanism of the beta2-adrenergic receptor. Proc Natl Acad Sci USA 108:18684–18689

    Article  PubMed  CAS  Google Scholar 

  37. Launay G, Téletchéa S, Wade F, Pajot-Augy E, Gibrat JF, Sanz G (2012) Automatic modeling of mammalian olfactory receptors and docking of odorants. Protein Eng Des Sel 25:377–386

    Article  PubMed  CAS  Google Scholar 

Download references

Note added in proof

A recent article reports a model of hOR1G1 [37]. Their model and our both put forward equivalent residues for the binding cavity. For example, their bound structure of 1-nonanol corresponds to one of our initial structures.

Acknowledgments

The CINES provided computer time. JG acknowledges the University of Nice Sophia Antipolis for funding the project Olfactome. Dr. Steffen Wolf and Pr. Klaus Gerwert are acknowledged for sending the structure of hOR2AG1. Dr. Ravinder Abrol helped in GPCR ab initio modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Golebiowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlier, L., Topin, J., Ronin, C. et al. How broadly tuned olfactory receptors equally recognize their agonists. Human OR1G1 as a test case. Cell. Mol. Life Sci. 69, 4205–4213 (2012). https://doi.org/10.1007/s00018-012-1116-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1116-0

Keywords

Navigation