Skip to main content

Advertisement

Log in

Pax6 localizes to chromatin-rich territories and displays a slow nuclear mobility altered by disease mutations

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The transcription factor Pax6 is crucial for the embryogenesis of multiple organs, including the eyes, parts of the brain and the pancreas. Mutations in one allele of PAX6 lead to eye diseases including Peter's anomaly and aniridia. Here, we use fluorescence recovery after photobleaching to show that Pax6 and also other Pax family proteins display a strikingly low nuclear mobility compared to other transcriptional regulators. For Pax6, the slow mobility is largely due to the presence of two DNA-binding domains, but protein-protein interactions also contribute. Consistently, the subnuclear localization of Pax6 suggests that it interacts preferentially with chromatin-rich territories. Some aniridia-causing missense mutations in Pax6 have impaired DNA-binding affinity. Interestingly, when these mutants were analyzed by FRAP, they displayed a pronounced increased mobility compared to wild-type Pax6. Hence, our results support the conclusion that disease mutations result in proteins with impaired function because of altered DNA- and protein-interaction capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FRAP:

fluorescence recovery after photobleaching

PD:

paired domain

HD:

homeodomain

TAD:

transactivation domain

GFP:

green fluorescent protein

References

  1. Bopp D, Burri M, Baumgartner S, Frigerio G, Noll M (1986) Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47:1033–1040

    Article  CAS  PubMed  Google Scholar 

  2. Noll M (1993) Evolution and role of Pax genes. Curr Opin Genet Dev 3:595–605

    Article  CAS  PubMed  Google Scholar 

  3. Krauss S, Johansen T, Korzh V, Fjose A (1991) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113:1193–1206

    CAS  PubMed  Google Scholar 

  4. Chi N, Epstein JA (2002) Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18:41–47

    Article  CAS  PubMed  Google Scholar 

  5. Jun S, Desplan C (1996) Cooperative interactions between paired domain and homeodomain. Development 122:2639–2650

    CAS  PubMed  Google Scholar 

  6. Mikkola I, Bruun J-A, Holm T, Johansen T (2001) Superactivation of Pax6-mediated transactivation from paired domain-binding sites by DNA-independent recruitment of different homeodomain proteins. J Biol Chem 276:4109–4118

    Article  CAS  PubMed  Google Scholar 

  7. Bruun J-A, Thomassen EIS, Kristiansen K, Tylden G, Holm T, Mikkola I, Bjørkøy G, Johansen T (2005) The third helix of the homeodomain of paired class homeodomain proteins acts as a recognition helix both for DNA and protein interactions. Nucleic Acids Res 33:2661–2675

    Article  CAS  PubMed  Google Scholar 

  8. Planque N, Leconte L, Coquelle FM, Martin P, Saule S (2001) Specific Pax-6/microphthalmia transcription factor interactions involve their dna-binding domains and inhibit transcriptional properties of both proteins. J Biol Chem 276:29330–29337

    Article  CAS  PubMed  Google Scholar 

  9. Callaerts P, Halder G, Gehring WJ (1997) PAX-6 in development and evolution. Annu Rev Neurosci 20:483–532

    Article  CAS  PubMed  Google Scholar 

  10. Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113:1435–1449

    CAS  PubMed  Google Scholar 

  11. Carriere C, Plaza S, Martin P, Quatannens B, Bailly M, Stehelin D, Saule S (1993) Characterization of quail Pax-6 (Pax-QNR) proteins expressed in the neuroretina. Mol Cell Biol 13:7257–7266

    CAS  PubMed  Google Scholar 

  12. Kim J, Lauderdale JD (2006) Analysis of Pax6 expression using a BAC transgene reveals the presence of a paired-less isoform of Pax6 in the eye and olfactory bulb. Dev Biol 292:486–505

    Article  CAS  PubMed  Google Scholar 

  13. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wuthrich K (1994) Homeodomain-DNA recognition. Cell 78:211–223

    Article  CAS  PubMed  Google Scholar 

  14. Mishra DK, Chen Z, Wu Y, Sarkissyan M, Koeffler HP, Vadgama JV (2010) Global methylation pattern of genes in androgen-sensitive and androgen-independent prostate cancer cells. Mol Cancer Therapeutics 9:33–45

    Article  CAS  Google Scholar 

  15. Shyr C-R, Tsai M-Y, Yeh S, Kang H-Y, Chang Y-C, Wong P-L, Huang C-C, Huang K-E, Chang C (2010) Tumor suppressor PAX6 functions as androgen receptor co-repressor to inhibit prostate cancer growth. Prostate 70:190–199

    PubMed  Google Scholar 

  16. Zhou Y-H, Tan F, Hess KR, Yung WKA (2003) The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas. Clin Cancer Res 9:3369–3375

    CAS  PubMed  Google Scholar 

  17. Zhou Y-H, Wu X, Tan F, Shi Y-X, Glass Y-X, Liu TJ, Wathen K, Hess KR, Gumin J, Lang F, Yung WKA (2005) PAX6 suppresses growth of human glioblastoma cells. J Neurooncol 71:223–229

    Article  CAS  PubMed  Google Scholar 

  18. Mascarenhas JB, Young KP, Littlejohn EL, Yoo BK, Salgia R, Lang D (2009) PAX6 is expressed in pancreatic cancer and actively participates in cancer progression through activation of the MET tyrosine kinase receptor gene. J Biol Chem 284:27524–27532

    Article  CAS  PubMed  Google Scholar 

  19. Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7:463–471

    Article  CAS  PubMed  Google Scholar 

  20. Solomon BD, Pineda-Alvarez DE, Balog JZ, Hadley D, Gropman AL, Nandagopal R, Han JC, Hahn JS, Blain D, Brooks B, Muenke M (2009) Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet A 149A:2543–2546

    Article  CAS  PubMed  Google Scholar 

  21. Pichaud F, Desplan C (2002) Pax genes and eye organogenesis. Curr Opin Genet Dev 12:430–434

    Article  CAS  PubMed  Google Scholar 

  22. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  CAS  PubMed  Google Scholar 

  23. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222

    CAS  PubMed  Google Scholar 

  24. Nelson LB, Spaeth GL, Nowinski TS, Margo CE, Jackson L (1984) Aniridia. A review. Surv Ophthalmol 28:621–642

    Article  CAS  PubMed  Google Scholar 

  25. Brown A, McKie M, van Heyningen V, Prosser J (1998) The human PAX6 mutation database. Nucleic Acids Res 26:259–264

    Article  CAS  PubMed  Google Scholar 

  26. Tzoulaki I, White I, Hanson I (2005) PAX6 mutations: genotype-phenotype correlations. BMC Genet 6:27

    Article  PubMed  Google Scholar 

  27. White J, Stelzer E (1999) Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol 9:61–65

    Article  CAS  PubMed  Google Scholar 

  28. Phair RD, Gorski SA, Misteli T (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol 375:393–414

    Article  CAS  PubMed  Google Scholar 

  29. Dobrucki JW, Feret D, Noatynska A (2007) Scattering of exciting light by live cells in fluorescence confocal imaging: phototoxic effects and relevance for FRAP studies. Biophys J 935:1778–1786

    Article  Google Scholar 

  30. Heinze KG, Costantino S, De Koninck P, Wiseman PW (2009) Beyond photobleaching, laser illumination unbinds fluorescent proteins. J Phys Chem B 113:5225–5233

    Article  CAS  PubMed  Google Scholar 

  31. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  CAS  PubMed  Google Scholar 

  32. Sprouse RO, Karpova TS, Mueller F, Dasgupta A, McNally JG, Auble DT (2008) Regulation of TATA-binding protein dynamics in living yeast cells. Proc Natl Acad Sci USA 105:13304–13308

    Article  CAS  PubMed  Google Scholar 

  33. Hinow P, Rogers CE, Barbieri CE, Pietenpol JA, Kenworthy AK, DiBenedetto E (2006) The DNA binding activity of p53 displays reaction-diffusion kinetics. Biophys J 91:330–342

    Article  CAS  PubMed  Google Scholar 

  34. Moumne L, Dipietromaria A, Batista F, Kocer A, Fellous M, Pailhoux E, Veitia RA (2008) Differential aggregation and functional impairment induced by polyalanine expansions in FOXL2, a transcription factor involved in cranio-facial and ovarian development. Hum Mol Genet 17:1010–1019

    Article  CAS  PubMed  Google Scholar 

  35. Schaaf MJM, Willetts L, Hayes BP, Maschera B, Stylianou E, Farrow SN (2006) The relationship between intranuclear mobility of the NF-κB subunit p65 and its dna binding affinity. J Biol Chem 281:22409–22420

    Article  CAS  PubMed  Google Scholar 

  36. Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi ME, Natoli G (2006) A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. EMBO J 25:798–810

    Article  CAS  PubMed  Google Scholar 

  37. McNally JG, Müller WG, Walker D, Wolford R, Hager GL (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265

    Article  CAS  PubMed  Google Scholar 

  38. Stavreva DA, Muller WG, Hager GL, Smith CL, McNally JG (2004) Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol Cell Biol 24:2682–2697

    Article  CAS  PubMed  Google Scholar 

  39. Farla P, Hersmus R, Geverts B, Mari PO, Nigg AL, Dubbink HJ, Trapman J, Houtsmuller AB (2004) The androgen receptor ligand-binding domain stabilizes DNA binding in living cells. J Struct Biol 147:50–61

    Article  CAS  PubMed  Google Scholar 

  40. Rayasam GV, Elbi C, Walker DA, Wolford R, Fletcher TM, Edwards DP, Hager GL (2005) Ligand-specific dynamics of the progesterone receptor in living cells and during chromatin remodeling in vitro. Mol Cell Biol 25:2406–2418

    Article  CAS  PubMed  Google Scholar 

  41. Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang C-Y, Hager GL, Saatcioglu F (2007) Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol Cell Biol 27:1823–1843

    Article  CAS  PubMed  Google Scholar 

  42. Matsuda K, Nishi M, Takaya H, Kaku N, Kawata M (2008) Intranuclear mobility of estrogen receptor alpha and progesterone receptors in association with nuclear matrix dynamics. J Cell Biochem 103:136–148

    Article  CAS  PubMed  Google Scholar 

  43. Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385

    Article  CAS  PubMed  Google Scholar 

  44. Nornes S, Clarkson M, Mikkola I, Pedersen M, Bardsley A, Martinez JP, Krauss S, Johansen T (1998) Zebrafish contains two Pax6 genes involved in eye development. Mech Dev 77:185–196

    Article  CAS  PubMed  Google Scholar 

  45. Wu Z-H, Shi Y, Tibbetts RS, Miyamoto S (2006) Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 311:1141–1146

    Article  CAS  PubMed  Google Scholar 

  46. Fedorova E, Zink D (2009) Nuclear genome organization: common themes and individual patterns. Curr Opin Genet Dev 19:166–171

    Article  CAS  PubMed  Google Scholar 

  47. Towbin BD, Meister P, Gasser SM (2009) The nuclear envelope—a scaffold for silencing? Curr Opin Genet Dev 19:180–186

    Article  CAS  PubMed  Google Scholar 

  48. Corry GN, Hendzel MJ, Underhill DA (2008) Subnuclear localization and mobility are key indicators of PAX3 dysfunction in Waardenburg syndrome. Hum Mol Genet 17:1825–1837

    Article  CAS  PubMed  Google Scholar 

  49. Singh BK, Gupta JP (1982) Hoechst fluorescence pattern of heterochromatin in three closely related members of Drosophila. Chromosoma 87:503–506

    Article  CAS  PubMed  Google Scholar 

  50. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  PubMed  Google Scholar 

  51. Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T (2004) Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24:6393–6402

    Article  CAS  PubMed  Google Scholar 

  52. Rekdal C, Sjottem E, Johansen T (2000) The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators. J Biol Chem 275:40288–40300

    Article  CAS  PubMed  Google Scholar 

  53. Gburcik V, Bot N, Maggiolini M, Picard D (2005) SPBP is a phosphoserine-specific repressor of estrogen receptor α. Mol Cell Biol 25:3421–3430

    Article  CAS  PubMed  Google Scholar 

  54. Sjottem E, Rekdal C, Svineng G, Johnsen SS, Klenow H, Uglehus RD, Johansen T (2007) The ePHD protein SPBP interacts with TopBP1 and together they co-operate to stimulate Ets1-mediated transcription. Nucleic Acids Res 35:6648–6662

    Article  CAS  PubMed  Google Scholar 

  55. Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M (2008) Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26:1663–1672

    Article  CAS  PubMed  Google Scholar 

  56. Hussain MA, Habener JF (1999) Glucagon gene transcription activation mediated by synergistic interactions of pax-6 and cdx-2 with the p300 co-activator. J Biol Chem 274:28950–28957

    Article  CAS  PubMed  Google Scholar 

  57. Yang Y, Stopka T, Golestaneh N, Wang Y, Wu K, Li A, Chauhan BK, Gao CY, Cveklova K, Duncan MK, Pestell RG, Chepelinsky AB, Skoultchi AI, Cvekl A (2006) Regulation of [alpha]A-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. EMBO J 25:2107–2118

    Article  CAS  PubMed  Google Scholar 

  58. Epstein J, Cai J, Glaser T, Jepeal L, Maas R (1994) Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. J Biol Chem 269:8355–8361

    CAS  PubMed  Google Scholar 

  59. Singh S, Chao LY, Mishra R, Davies J, Saunders GF (2001) Missense mutation at the C-terminus of PAX6 negatively modulates homeodomain function. Hum Mol Genet 10:911–918

    Article  CAS  PubMed  Google Scholar 

  60. van Heyningen V, Williamson KA (2002) PAX6 in sensory development. Hum Mol Genet 11:1161–1167

    Article  PubMed  Google Scholar 

  61. Chauhan BK, Yang Y, Cveklova K, Cvekl A (2004) Functional properties of natural human PAX6 and PAX6(5a) mutants. Invest Ophthalmol Vis Sci 45:385–392

    Article  PubMed  Google Scholar 

  62. Tang HK, Chao LY, Saunders GF (1997) Functional analysis of paired box missense mutations in the PAX6 gene. Hum Mol Genet 6:381–386

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Y-H, Zheng JB, Gu X, Saunders GF, Yung WKA (2002) Novel PAX6 binding sites in the human genome and the role of repetitive elements in the evolution of gene regulation. Genome Res 12:1716–1722

    Article  CAS  PubMed  Google Scholar 

  64. Sharp ZD, David LS, Maureen GM, Ilia IO, Michael AM (2004) Inactivating Pit-1 mutations alter subnuclear dynamics suggesting a protein misfolding and nuclear stress response. J Cell Biochem 92:664–678

    Article  CAS  PubMed  Google Scholar 

  65. Schmiedeberg L, Weisshart K, Diekmann S, Meyer zu Hoerste G, Hemmerich P (2004) High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol Biol Cell 15:2819–2833

    Article  CAS  PubMed  Google Scholar 

  66. Dunham-Ems SM, Lee Y-W, Stachowiak EK, Pudavar H, Claus P, Prasad PN, Stachowiak MK (2009) Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Mol Biol Cell 20:2401–2412

    Article  CAS  PubMed  Google Scholar 

  67. Baum L, Pang CP, Fan DS, Poon PM, Leung YF, Chua JK, Lam DS (1999) Run-on mutation and three novel nonsense mutations identified in the PAX6 gene in patients with aniridia. Hum Mutat 14:272–273

    Article  CAS  PubMed  Google Scholar 

  68. Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C, Stevens JM, Kendall BE, Shorvon SD, Hanson IM, Moore AT, van Heyningen V (2001) PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat Genet 28:214–216

    Article  CAS  PubMed  Google Scholar 

  69. Mitchell TN, Free SL, Williamson KA, Stevens JM, Churchill AJ, Hanson IM, Shorvon SD, Moore AT, van Heyningen V, Sisodiya SM (2003) Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann Neurol 53:658–663

    Article  CAS  PubMed  Google Scholar 

  70. De Becker I, Walter M, Noël LP (2004) Phenotypic variations in patients with a 1630 A>T point mutation in the PAX6 gene. Can J Ophthalmol 39:272–278

    PubMed  Google Scholar 

  71. Chao L-Y, Mishra R, Strong LC, Saunders GF (2003) Missense mutations in the DNA-binding region and termination codon in PAX6. Hum Mutat 21:138–145

    Article  CAS  PubMed  Google Scholar 

  72. Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7:2120–2134

    Article  CAS  PubMed  Google Scholar 

  73. Wilson DS, Guenther B, Desplan C, Kuriyan J (1995) High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 82:709–719

    Article  CAS  PubMed  Google Scholar 

  74. Schaaf MJM, Cidlowski JA (2003) Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Mol Cell Biol 23:1922–1934

    Article  CAS  PubMed  Google Scholar 

  75. Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, Bjorkoy G, Johansen T (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581

    Article  CAS  PubMed  Google Scholar 

  76. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  77. Galvani A, Courbeyrette R, Agez M, Ochsenbein F, Mann C, Thuret JY (2008) In vivo study of the nucleosome assembly functions of ASF1 histone chaperones in human cells. Mol Cell Biol 28:3672–3685

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ernst Thomassen, Ingvild Mikkola, Endalkachew A. Alemu, J.Y. Thuret and J.A. Goldman for their generous gifts of the plasmid constructs used in this work. We thank the BioImaging FUGE core facility at IMB for use of instrumentation and expert assistance. We are indebted to Kenneth Bowitz Larsen for guidance on the use of confocal microscopy software. This study was supported by grants from the Norwegian Cancer Society and the Blix Foundation to TJ.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terje Johansen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 68.5 kb)

Supplementary figure S1

Confocal pictures of HeLa cells transiently expressing GFP, Cherry, GFP and Cherry, GFP and Cherry-Pax6, or GFP-Pax6 and Cherry. The pictures show that the punctuated nuclear pattern observed for Pax6 is not caused by the tags used. Subconfluent HeLa cells were transfected with the different constructs as described in the methods section. The following day, confocal images were taken with the cells kept in 1 × HBSS (Invitrogen) supplemented with 10% fetal calf serum. Scale bars: 10 μm. Supplementary material 2 (TIFF 2.18 mb)

Supplementary figure S2

a FRAP recovery curves for GFP-Pax6 in HeLa and U2OS cells. b FRAP recovery curves for zebrafish Pax6 with N-terminal GFP or C-terminal YFP tag. Changing the location of the tag does not alter the mobility significantly. c Transactivation assay with HeLa and U2OS cells transiently transfected with the Pax6 paired domain reporter P6xCON-luc and 50 to 150 ng of GFP-Pax6 and Pax6-GFP. pCMV-βgal was used to normalize the transfection efficiency, and pcDNA3 was used to equal the DNA concentration in each well. The fold activation is determined based on the background level obtained with pcDNA3 alone. The results are the average of three independent experiments, triplicates each time, with standard error bars included. Supplement to figure 2. Supplementary material 3 (TIFF 252 kb)

Supplementary figure S3

FRAP recovery curves for different N-terminal GFP-tagged transcriptional regulators compared with GFP-Pax6. Supplement to figure 3. Supplementary material 4 (TIFF 558 kb)

Supplementary figure S4

FRAP recovery curves for different N-terminal GFP-tagged Pax family members compared with GFP-Pax6. z, zebrafish; m, mouse; h, human. Supplement to figure 4. Supplementary material 5 (TIFF 551 kb)

Supplementary figure S5

FRAP recovery curves for different N-terminal GFP-tagged parts of Pax6 and the splice variant Pax6(5A) compared with full-length GFP-Pax6. PD, paired domain; HD, homeodomain; TAD, transactivation domain. Supplement to figure 5. Supplementary material 6 (TIFF 440 kb)

Supplementary figure S6

FRAP recovery curves for different N-terminal GFP-tagged point mutations in Pax6 compared with the wild-type protein. Supplement to figure 6. Supplementary material 7 (TIFF 725 kb)

Supplementary figure S7

Subnuclear localization of mutated versus wild-type GFP-tagged Pax6. Subconfluent HeLa cells were transfected with the different constructs as described in the methods section. The following day, confocal images were taken with the cells kept in 1 × HBSS (Invitrogen) supplemented with 10% fetal calf serum. Scale bars: 5 μm. Supplementary material 8 (TIFF 12.4 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elvenes, J., Sjøttem, E., Holm, T. et al. Pax6 localizes to chromatin-rich territories and displays a slow nuclear mobility altered by disease mutations. Cell. Mol. Life Sci. 67, 4079–4094 (2010). https://doi.org/10.1007/s00018-010-0429-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0429-0

Keywords

Navigation