Skip to main content
Log in

Noether’s problem for cyclic groups of prime order

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let k be a field and \(k(x_0,\ldots ,x_{p-1})\) be the rational function field of p variables over k where p is a prime number. Suppose that \(G=\langle \sigma \rangle \simeq C_p\) acts on \(k(x_0,\ldots ,x_{p-1})\) by k-automorphisms defined as \(\sigma :x_0\mapsto x_1\mapsto \cdots \mapsto x_{p-1}\mapsto x_0\). Denote by P the set of all prime numbers and define \(P_0=\{p\in P:\mathbb {Q}(\zeta _{p-1})\) is of class number one\(\}\) where \(\zeta _n\) a primitive n-th root of unity in \(\mathbb {C}\) for a positive integer n; \(P_0\) is a finite set by Masley and Montgomery (J Reine Angew Math 286/287:248–256, 1976). Theorem. Let k be an algebraic number field and \(P_k=\{p\in P: p\) is ramified in \(k\}\). Then \(k(x_0,\ldots ,x_{p-1})^G\) is not stably rational over k for all \(p\in P\backslash (P_0\cup P_k)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), 175–229.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Endo and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan. 25 (1973), 7–26.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Endo and T. Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1975), 85–104.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Kaplansky, Commutative Rings, Revised Edition, The University of Chicago Press, Chicago, Ill.-London, 1974.

  5. S. Lang, Algebra, Revised Third Edition, Springer, New York, 2002.

  6. H. W. Lenstra Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248–256.

    MathSciNet  MATH  Google Scholar 

  8. M. Nagata, Theory of Commutative Fields, Transl. of Math. Mongraphs, vol. 125, Amer. Math. Soc., Providence, 1993.

  9. B. Plans, On Noether’s rationality problem for cyclic groups over \({\mathbb{Q}}\), Proc. Amer. Math. Soc. 145 (2017), 2407–2409.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math. 47 (1984), 165–215.

    Article  MathSciNet  MATH  Google Scholar 

  11. J-P. Serre, Linear Representations of Finite Groups, Springer, Graduate Texts in Mathematics, Vol. 42, Springer, Berlin, 1977.

  12. R. G. Swan, Noether’s problem in Galois theory, In: Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982), 21–40, Springer, New York-Berlin, 1983.

  13. V. E. Voskresenskii, Algebraic Groups and their Birational Invariants, Transl. Math. Monographs, vol. 179, Amer. Math. Soc., Providence, RI, 1998.

  14. O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Van Nostrand, 1958; reprinted by Springer-Verlag, 1975, Berlin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-chang Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Mc. Noether’s problem for cyclic groups of prime order. Arch. Math. 110, 1–8 (2018). https://doi.org/10.1007/s00013-017-1123-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-017-1123-3

Keywords

Mathematics Subject Classification

Navigation