Skip to main content

Advertisement

Log in

A positive feedback cycle between the alarmin S100A8/A9 and NLRP3 inflammasome-GSDMD signalling reinforces the innate immune response in Candida albicans keratitis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Fungal keratitis is a severe sight-threatening ocular infection, without effective treatment strategies available now. Calprotectin S100A8/A9 has recently attracted great attention as a critical alarmin modulating the innate immune response against microbial challenges. However, the unique role of S100A8/A9 in fungal keratitis is poorly understood.

Methods

Experimental fungal keratitis was established in wild-type and gene knockout (TLR4−/− and GSDMD−/−) mice by infecting mouse corneas with Candida albicans. The degree of mouse cornea injuries was evaluated by clinical scoring. To interrogate the molecular mechanism in vitro, macrophage RAW264.7 cell line was challenged with Candida albicans or recombinant S100A8/A9 protein. Label-free quantitative proteomics, quantitative real-time PCR, Western blotting, and immunohistochemistry were conducted in this research.

Results

Herein, we characterized the proteome of mouse corneas infected with Candida albicans and found that S100A8/A9 was robustly expressed at the early stage of the disease. S100A8/A9 significantly enhanced disease progression by promoting NLRP3 inflammasome activation and Caspase-1 maturation, accompanied by increased accumulation of macrophages in infected corneas. In response to Candida albicans infection, toll-like receptor 4 (TLR4) sensed extracellular S100A8/A9 and acted as a bridge between S100A8/A9 and NLRP3 inflammasome activation in mouse corneas. Furthermore, the deletion of TLR4 resulted in noticeable improvement in fungal keratitis. Remarkably, NLRP3/GSDMD-mediated macrophage pyroptosis in turn facilitates S100A8/A9 secretion during Candida albicans keratitis, thus forming a positive feedback cycle that amplifies the proinflammatory response in corneas.

Conclusions

The present study is the first to reveal the critical roles of the alarmin S100A8/A9 in the immunopathology of Candida albicans keratitis, highlighting a promising approach for therapeutic intervention in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sharma N, Bagga B, Singhal D, Nagpal R, Kate A, Saluja G, et al. Fungal keratitis: a review of clinical presentations, treatment strategies and outcomes. Ocul Surf. 2021;24:22–30.

    Article  PubMed  Google Scholar 

  2. Prajna NV, Krishnan T, Mascarenhas J, Srinivasan M, Oldenburg CE, ToutainKidd CM, et al. Predictors of outcome in fungal keratitis. Eye (Lond). 2012;26:1226–31.

    Article  PubMed  Google Scholar 

  3. Mills B, Radhakrishnan N, Karthikeyan Rajapandian SG, Rameshkumar G, Lalitha P, Prajna NV. The role of fungi in fungal keratitis. Exp Eye Res. 2021;202: 108372.

    Article  CAS  PubMed  Google Scholar 

  4. Patin EC, Thompson A, Orr SJ. Pattern recognition receptors in fungal immunity. Semin Cell Dev Biol. 2019;89:24–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C, et al. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation. 2015;12:21.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493–518.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol. 2008;214(2):161–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen H, Xu B, Yang C, Xue W, You Z, Wu X, et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials. 2022;280: 121279.

    Article  CAS  PubMed  Google Scholar 

  9. Cunha C, Carvalho A, Esposito A, Bistoni F, Romani L. DAMP signaling in fungal infections and diseases. Front Immunol. 2012;3:286.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol. 2018;9:1298.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pruenster M, Vogl T, Roth J, Sperandio M. S100A8/A9: From basic science to clinical application. Pharmacol Ther. 2016;167:120–31.

    Article  CAS  PubMed  Google Scholar 

  12. Volz HC, Laohachewin D, Seidel C, Lasitschka F, Keilbach K, Wienbrandt AR. S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-κB signaling. Basic Res Cardiol. 2012;107(2):250.

    Article  PubMed  Google Scholar 

  13. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95–112.

    Article  CAS  PubMed  Google Scholar 

  14. Rigiracciolo DC, Nohata N, Lappano R, Cirillo F, Talia M, Adame-Garcia SR. Focal adhesion kinase (FAK)-Hippo/YAP transduction signaling mediates the stimulatory effects exerted by S100A8/A9-RAGE system in triple-negative breast cancer (TNBC). J Exp Clin Cancer Res. 2022;41(1):193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pirr S, Dauter L, Vogl T, Ulas T, Bohnhorst B, Roth J, Viemann D. S100A8/A9 is the first predictive marker for neonatal sepsis. Clin Trans Med. 2021;11(4): e338.

    Article  Google Scholar 

  16. Joshi A, Schmidt LE, Burnap SA, Lu R, Chan MV, Armstrong PC. Neutrophil-derived protein S100A8/A9 alters the platelet proteome in acute myocardial infarction and is associated with changes in platelet reactivity. Arterioscler Thromb Vasc Biol. 2022;42(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  17. van Bon L, Cossu M, Loof A, Gohar F, Wittkowski H, Vonk M. Proteomic analysis of plasma identifies the Toll-like receptor agonists S100A8/A9 as a novel possible marker for systemic sclerosis phenotype. Ann Rheum Dis. 2014;73(8):1585–9.

    Article  PubMed  Google Scholar 

  18. Guo Q, Zhao Y, Li J, Liu J, Yang X, Guo X, et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host Microbe. 2021;29(2):222-235.e4.

    Article  CAS  PubMed  Google Scholar 

  19. Deng Q, Sun M, Yang K, Zhu M, Chen K, Yuan J, et al. MRP8/14 enhances corneal susceptibility to Pseudomonas aeruginosa Infection by amplifying inflammatory responses. Invest Ophthalmol Vis Sci. 2013;54(2):1227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Skronska-Wasek W, Durlanik S, Le HQ, Schroeder V, Kitt K, Garnett JP, et al. The antimicrobial peptide S100A8/A9 produced by airway epithelium functions as a potent and direct regulator of macrophage phenotype and function. Eur Respir J. 2022;59(4):2002732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pandey A, Shen C, Feng S, Man SM. Cell biology of inflammasome activation. Trends Cell Biol. 2021;31(11):924–39.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Sharif H, Vora SM, Zheng Y, Wu H. Structures and functions of the inflammasome engine. J Allergy Clin Immunol. 2021;147(6):2021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rogiers O, Frising UC, Kucharíková S, Jabra-Rizk MA, van Loo G, Van Dijck P, et al. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae. mBio. 2019;10(1):e02221-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sreejit G, Abdel-Latif A, Athmanathan B, Annabathula R, Dhyani A, NoothiSK, et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation. 2020;141(13):1080–94.

  25. Sreejit G, Nooti SK, Jaggers RM, Athmanathan B, Ho Park K, Al-Sharea A, et al. Retention of the NLRP3 inflammasome-primed neutrophils in the bone marrow is essential for myocardial infarction-induced granulopoiesis. Circulation. 2022;145(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  26. Geng Y, Ma Q, Liu YN, Peng N, Yuan FF, Li XG, et al. Heatstroke induces liver injury via IL-1β and HMGB1-induced pyroptosis. J Hepatol. 2015;63(3):622–33.

    Article  CAS  PubMed  Google Scholar 

  27. Lian H, Fang X, Li Q, Liu S, Wei Q, Hua X, et al. NLRP3 inflammasome-mediated pyroptosis pathway contributes to the pathogenesis of Candida albicans keratitis. Front Med. 2022;9: 845129.

    Article  Google Scholar 

  28. Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, et al. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-022-05066-3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gong W, Shi Y, Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology. 2020;225: 151884.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Zhang Y, Lieberman J. Lighting a Fire: Can we harness pyroptosis to ignite anti-tumor immunity? Cancer Immunol Res. 2021;9(1):2–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481:278–86.

    Article  CAS  PubMed  Google Scholar 

  32. Willingham SB, Allen IC, Bergstralh DT, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and - independent pathways. J Immunol. 2009;183:2008–15.

    Article  CAS  PubMed  Google Scholar 

  33. Yuan X, Wilhelmus KR. Toll-like receptors involved in the pathogenesis of experimental Candida albicans keratitis. Invest Ophthalmol Vis Sci. 2010;51(4):2094–100.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kinoshita R, Sato H, Yamauchi A, Takahashi Y, Inoue Y, Sumardika IW, et al. exSSSRs (extracellular S100 soil sensor receptors)-Fc fusion proteins work as prominent decoys to S100A8/A9-induced lung tropic cancer metastasis. Int J Cancer Int J Cancer. 2019;144(12):3138–45.

    Article  CAS  PubMed  Google Scholar 

  35. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu Y, Zhang J, Yu S, Li Y, Zhu J, Zhang K, et al. Cell pyroptosis in health and inflammatory diseases. Cell Death Discov. 2022;8(1):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology. 2017;124(11):1678–89.

    Article  PubMed  Google Scholar 

  38. Brown L, Leck AK, Gichangi M, Burton MJ, Denning DW. The Global incidence and diagnosis of fungal keratitis. Lancet Infect Dis. 2021;21(3):e49–57.

    Article  PubMed  Google Scholar 

  39. Qiao GL, Ling J, Wong T, Yeung SN, Iovieno A. Candida keratitis: epidemiology, management, and clinical outcomes. Cornea. 2020;39(7):801–5.

    Article  PubMed  Google Scholar 

  40. Portnoy JM, Williams PB, Barnes CS. Innate immune responses to fungal allergens. Curr Allergy Asthma Rep. 2016;16(9):62.

    Article  PubMed  Google Scholar 

  41. Frosch M, Metze D, Foell D, Vogl T, Sorg C, Sunderkotter C, et al. Early activation of cutaneous vessels and epithelial cells is characteristic of acute systemic onset juvenile idiopathic arthritis. Exp Dermatol. 2005;14:259–65.

    Article  PubMed  Google Scholar 

  42. Henke MO, Renner A, Rubin BK, Gyves JI, Lorenz E, Koo JS. Up-regulation of S100A8 and S100A9 protein in bronchial epithelial cells by lipopolysaccharide. Exp Lung Res. 2006;32:331–47.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan X, Hua X, Wilhelmus KR. The corneal expression of antimicrobial peptides during experimental fungal keratitis. Curr Eye Res. 2010;35(10):872–9.

    Article  CAS  PubMed  Google Scholar 

  44. Clohessy PA, Golden BE. Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol. 1995;42:551–6.

    Article  CAS  PubMed  Google Scholar 

  45. Sohnle PG, Hunter MJ, Hahn B, Chazin WJ. Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis. 2000;182:1272–5.

    Article  CAS  PubMed  Google Scholar 

  46. Clark HL, Jhingran A, Sun Y, Vareechon C, de Jesus CS, Skaar EP, et al. Zinc and manganese chelation by neutrophil S100A8/A9 (Calprotectin) limits extracellular aspergillus fumigatus hyphal growth and corneal infection. J Immunol. 2016;196(1):336–44.

    Article  CAS  PubMed  Google Scholar 

  47. Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology. 2019;156(4):329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 20211;8(5):1141–60.

  49. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50.

    Article  CAS  PubMed  Google Scholar 

  51. Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet. 2020;21(10):630–44.

    Article  CAS  PubMed  Google Scholar 

  52. de Sousa AR, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. Mol Biosyst. 2009;5(12):1512–26.

    Google Scholar 

  53. Kim S, Jacobs-Wagner C. Effects of mRNA degradation and site-specific transcriptional pausing on protein expression noise. Biophys J. 2018;114(7):1718–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zong M, Bruton JD, Grundtman C, Yang H, Li JH, Alexanderson H. TLR4 as receptor for HMGB1 induced muscle dysfunction in myositis. Ann Rheum Dis. 2013;72(8):1390–9.

    Article  CAS  PubMed  Google Scholar 

  55. Laouedj M, Tardif MR, Gil L, Raquil MA, Lachhab A, Pelletier M. S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood. 2017;129(14):1980–90.

    Article  CAS  PubMed  Google Scholar 

  56. Martinon F, Burns K, Rg TJ. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.

    Article  CAS  PubMed  Google Scholar 

  57. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu M, Li C, Zhao GQ, Lin J, Che CY, Xu Q, et al. Boxb mediate BALB/c mice corneal inflammation through a TLR4/MyD88-dependent signaling pathway in Aspergillus fumigatus keratitis. Int J Ophthalmol. 2018;11(4):548–52.

    PubMed  PubMed Central  Google Scholar 

  59. Yuan X, Mitchell BM, Wilhelmus KR. Gene profiling and signaling pathways of Candida albicans keratitis. Mol Vis. 2008;14:1792–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma L, Sun P, Zhang JC, Zhang Q, Yao SL. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med. 2017;40(1):31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li K, Chen G, Luo H, Li J, Liu A, Yang C, et al. MRP8/14 mediates macrophage efferocytosis through RAGE and Gas6/MFG-E8, and induces polarization via TLR4-dependent pathway. J Cell Physiol. 2021;236(2):1375–90.

    Article  CAS  PubMed  Google Scholar 

  62. Kraakman MJ, Lee MK, Al-Sharea A, Dragoljevic D, Barrett TJ, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127(6):2133–47.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wellington M, Koselny K, Sutterwala FS, Krysan DJ. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell. 2014;13:329–40.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Oliva K, Barker G, Rice GE, Bailey MJ, Lappas M. 2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue. J Endocrinol. 2013;218(2):165–78.

    Article  CAS  PubMed  Google Scholar 

  65. Rubartelli A. DAMP-mediated activation of NLRP3-inflammasome in brain sterile inflammation: the fine line between healing and neurodegeneration. Front Immunol. 2014;5:99.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ji Q, Wang L, Liu J, Wu Y, Lv H, Wen Y, et al. Aspergillus fumigatus-stimulated human corneal epithelial cells induce pyroptosis of THP-1 macrophages by secreting TSLP. Inflammation. 2021;44(2):682–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (81970772 and 21906179), the National Key Research and Development Program of China (2020YFA0907500), the K.C. Wong Education Foundation of China (GJTD-2020-03), the Tianjin Natural Science Foundation (21JCZDJC01250), the Science and Technology Program of Baoding of Huifang Lian (No. 2141ZF086), and the Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-016A).

Author information

Authors and Affiliations

Authors

Contributions

XF was involved in investigation, methodology, writing––original draft, and writing––review and editing. HL, SL, JD, and WL contributed to investigation and methodology. XH performed writing––original draft, writing––review and editing, and supervision. CYL and XYY were involved in investigation, methodology, writing––original draft, writing––review and editing, and supervision. All the authors contributed to the revision of the final manuscript.

Corresponding authors

Correspondence to Chunyang Liao or Xiaoyong Yuan.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethics approval and consent to participate

All animal experiments were in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, and this study was formally reviewed and approved by the Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences Animal Care and Ethics Committee (Approval No. AEWC-RCEES-2022042).

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10837 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Lian, H., Liu, S. et al. A positive feedback cycle between the alarmin S100A8/A9 and NLRP3 inflammasome-GSDMD signalling reinforces the innate immune response in Candida albicans keratitis. Inflamm. Res. 72, 1485–1500 (2023). https://doi.org/10.1007/s00011-023-01757-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01757-5

Keywords

Navigation