Skip to main content
Log in

GITRL impairs the immunosuppressive function of MDSCs via PTEN-mediated signaling pathway in experimental Sjögren syndrome

  • Original Research
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Recent studies have revealed a role of the ligand for glucocorticoid-induced TNFR family-related protein (GITRL) in mediating functional dysregulations of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of primary Sjögren syndrome (pSS), but the underlying molecular mechanism is largely unclear. In this study, we aimed to elucidate GITRL-mediated signaling pathways in MDSCs during the development of experimental SS (ESS).

Methods

MDSCs were stimulated with recombinant GITRL, the activation of PTEN, AKT and STAT3 in MDSCs was analyzed by Western blot. MDSCs with different treatment were adoptively transferred to ESS mice. ELISA was used to detect the level of autoantibodies. Proportions of Th1 and Th17 cells were examined by flow cytometry. Histological evaluation of glandular destruction was analyzed by hematoxylin and eosin (HE) staining. The interaction of GITR, TRAF3 and PP2A was detected by CoIP.

Results

Upon the engagement of GITR on MDSCs, PTEN was activated and led to the inhibition of downstream AKT/STAT3 signaling pathway, therefore, resulting in the impaired immunosuppressive function of MDSCs. In ESS mice, blocking the activity of PTEN could efficiently restore the immunomodulatory effect of MDSCs and alleviate the progression of ESS. Furthermore, TRAF3 was found to bind to GITR, and then recruited PP2A to dephosphorylate PTEN, thus enhancing the activity of PTEN.

Conclusion

This study elucidated the molecular mechanism underlying the effect of GITRL in regulating the function of MDSCs, which may provide a new therapeutic target for the treatment of pSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brito-Zeron P, Baldini C, Bootsma H, Bowman SJ, Jonsson R, Mariette X, et al. Sjogren syndrome. Nat Rev Dis Primers. 2016;2:16047. https://doi.org/10.1038/nrdp.2016.47.

    Article  PubMed  Google Scholar 

  2. Fox RI. Sjögren’s syndrome. The Lancet. 2005;366:321–31. https://doi.org/10.1016/s0140-6736(05)66990-5.

    Article  CAS  Google Scholar 

  3. Mariette X, Criswell LA. Primary Sjogren’s syndrome. N Engl J Med. 2018;378:931–9. https://doi.org/10.1056/NEJMcp1702514.

    Article  PubMed  Google Scholar 

  4. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren’s syndrome: a consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis. 2017;76:9–16. https://doi.org/10.1136/annrheumdis-2016-210571.

    Article  PubMed  Google Scholar 

  5. Mona M, Mondello S, Hyon JY, Saleh W, Han K, Lee HJ, et al. Clinical usefulness of anti-muscarinic type 3 receptor autoantibodies in patients with primary Sjogren’s syndrome. Clin Exp Rheumatol. 2021;39:795–803. https://doi.org/10.55563/clinexprheumatol/gy6udz.

    Article  PubMed  Google Scholar 

  6. Tsuboi H, Matsumoto I, Wakamatsu E, Nakamura Y, Iizuka M, Hayashi T, et al. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjogren’s syndrome. Clin Exp Immunol. 2010;162:53–61. https://doi.org/10.1111/j.1365-2249.2010.04188.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dawson LJ, Stanbury J, Venn N, Hasdimir B, Rogers SN, Smith PM. Antimuscarinic antibodies in primary Sjogren’s syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum. 2006;54:1165–73. https://doi.org/10.1002/art.21764.

    Article  CAS  PubMed  Google Scholar 

  8. Xiao F, Han M, Rui K, Ai X, Tian J, Zhang W, et al. New insights into follicular helper T cell response and regulation in autoimmune pathogenesis. Cell Mol Immunol. 2021;18:1610–2. https://doi.org/10.1038/s41423-021-00688-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tian J, Hong Y, Zhu Q, Zhou H, Zhang Y, Shen Z, et al. Mesenchymal stem cell enhances the function of MDSCs in experimental Sjogren syndrome. Front Immunol. 2020;11:604607. https://doi.org/10.3389/fimmu.2020.604607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nat Rev Rheumatol. 2013;9:544–56. https://doi.org/10.1038/nrrheum.2013.110.

    Article  CAS  PubMed  Google Scholar 

  11. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021. https://doi.org/10.1038/s41577-020-00490-y.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guo C, Hu F, Yi H, Feng Z, Li C, Shi L, et al. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann Rheum Dis. 2016;75:278–85. https://doi.org/10.1136/annrheumdis-2014-205508.

    Article  CAS  PubMed  Google Scholar 

  13. Yi H, Guo C, Yu X, Zuo D, Wang XY. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol. 2012;189:4295–304. https://doi.org/10.4049/jimmunol.1200086.

    Article  CAS  PubMed  Google Scholar 

  14. Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu ZG, et al. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med. 2016;8:331ra40. https://doi.org/10.1126/scitranslmed.aae0482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian J, Rui K, Hong Y, Wang X, Xiao F, Lin X, et al. Increased GITRL impairs the function of myeloid-derived suppressor cells and exacerbates primary Sjögren syndrome. J Immunol. 2019;202:1693–703. https://doi.org/10.4049/jimmunol.1801051.

    Article  CAS  PubMed  Google Scholar 

  16. Trikha P, Carson WE 3rd. Signaling pathways involved in MDSC regulation. Biochim Biophys Acta. 2014;1846:55–65. https://doi.org/10.1016/j.bbcan.2014.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest. 2013;123:1580–9. https://doi.org/10.1172/JCI60083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mao FY, Zhao YL, Lv YP, Teng YS, Kong H, Liu YG, et al. CD45(+)CD33(low)CD11b(dim) myeloid-derived suppressor cells suppress CD8(+) T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death Dis. 2018;9:763. https://doi.org/10.1038/s41419-018-0803-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nayar S, Campos J, Smith CG, Iannizzotto V, Gardner DH, Colafrancesco S, et al. Phosphatidylinositol 3-kinase delta pathway: a novel therapeutic target for Sjogren’s syndrome. Ann Rheum Dis. 2019;78:249–60. https://doi.org/10.1136/annrheumdis-2017-212619.

    Article  CAS  PubMed  Google Scholar 

  20. Hong X, Wang X, Rang X, Yin X, Zhang X, Wang R, et al. The shared mechanism and candidate drugs of multiple sclerosis and Sjogren’s syndrome analyzed by bioinformatics based on GWAS and transcriptome data. Front Immunol. 2022;13:857014. https://doi.org/10.3389/fimmu.2022.857014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rui K, Hong Y, Zhu Q, Shi X, Xiao F, Fu H, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate murine Sjogren’s syndrome by modulating the function of myeloid-derived suppressor cells. Cell Mol Immunol. 2021;18:440–51. https://doi.org/10.1038/s41423-020-00587-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian J, Zhang B, Rui K, Wang S. The role of GITR/GITRL interaction in autoimmune diseases. Front Immunol. 2020;11:588682. https://doi.org/10.3389/fimmu.2020.588682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohm AP, Williams JS, Miller SD. Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J Immunol. 2004;172:4686–90. https://doi.org/10.4049/jimmunol.172.8.4686.

    Article  CAS  PubMed  Google Scholar 

  24. Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G, et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol. 2004;34:613–22. https://doi.org/10.1002/eji.200324804.

    Article  CAS  PubMed  Google Scholar 

  25. Petrillo MG, Ronchetti S, Ricci E, Alunno A, Gerli R, Nocentini G, et al. GITR+ regulatory T cells in the treatment of autoimmune diseases. Autoimmun Rev. 2015;14:117–26. https://doi.org/10.1016/j.autrev.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3:135–42. https://doi.org/10.1038/ni759.

    Article  CAS  PubMed  Google Scholar 

  27. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2:725–34. https://doi.org/10.1038/nri910.

    Article  CAS  PubMed  Google Scholar 

  28. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72. https://doi.org/10.1146/annurev.immunol.20.091301.131133.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Hostager BS, Arkee T, Bishop GA. Multiple mechanisms for TRAF3-mediated regulation of the T cell costimulatory receptor GITR. J Biol Chem. 2021;297:101097. https://doi.org/10.1016/j.jbc.2021.101097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Esparza EM, Arch RH. Glucocorticoid-induced TNF receptor, a costimulatory receptor on naive and activated T cells, uses TNF receptor-associated factor 2 in a novel fashion as an inhibitor of NF-kappa B activation. J Immunol. 2005;174:7875–82. https://doi.org/10.4049/jimmunol.174.12.7875.

    Article  CAS  PubMed  Google Scholar 

  31. Esparza EM, Arch RH. TRAF4 functions as an intermediate of GITR-induced NF-kappaB activation. Cell Mol Life Sci. 2004;61:3087–92. https://doi.org/10.1007/s00018-004-4417-0.

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Shi Y, Yang M, Ma J, Tian J, Chen J, et al. Glucocorticoid-induced tumor necrosis factor receptor family-related protein exacerbates collagen-induced arthritis by enhancing the expansion of Th17 cells. Am J Pathol. 2012;180:1059–67. https://doi.org/10.1016/j.ajpath.2011.11.018.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7. https://doi.org/10.1126/science.275.5308.1943.

    Article  CAS  PubMed  Google Scholar 

  34. Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19:547–562. https://doi.org/10.1038/s41580-018-0015-0.

  35. Nocentini G, Riccardi C. GITR: a modulator of immune response and inflammation. Adv Exp Med Biol. 2009;647:156–73. https://doi.org/10.1007/978-0-387-89520-8_11.

    Article  CAS  PubMed  Google Scholar 

  36. Wallis AM, Bishop GA. TRAF3 regulation of inhibitory signaling pathways in B and T lymphocytes by kinase and phosphatase localization. J Leukoc Biol. 2018. https://doi.org/10.1002/JLB.2MIR0817-339RR.

    Article  PubMed  Google Scholar 

  37. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393. https://doi.org/10.1038/ncomms4393.

    Article  CAS  PubMed  Google Scholar 

  38. Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, et al. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol. 2013;191:1073–81. https://doi.org/10.4049/jimmunol.1203535.

    Article  CAS  PubMed  Google Scholar 

  39. Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, et al. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol. 2012;188:1136–46. https://doi.org/10.4049/jimmunol.1101816.

    Article  CAS  PubMed  Google Scholar 

  40. Park MJ, Lee SH, Kim EK, Lee EJ, Park SH, Kwok SK, et al. Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the Sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol. 2016;68:2717–27. https://doi.org/10.1002/art.39767.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Huang Y, Wang S, Fu R, Guo C, Wang H, et al. Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts. J Autoimmun. 2015;65:82–9. https://doi.org/10.1016/j.jaut.2015.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, et al. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol. 2007;179:5228–37.

    Article  CAS  PubMed  Google Scholar 

  43. Gan X, Feng X, Gu L, Tan W, Sun X, Lv C, et al. Correlation of increased blood levels of GITR and GITRL with disease severity in patients with primary Sjogren’s syndrome. Clin Dev Immunol. 2013;2013:340751. https://doi.org/10.1155/2013/340751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang M, Chen J, Zhang W, Zhang R, Ye Y, Liu P, et al. Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front Immunol. 2017;8:1840. https://doi.org/10.3389/fimmu.2017.01840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hix LM, Karavitis J, Khan MW, Shi YH, Khazaie K, Zhang M. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. J Biol Chem. 2013;288:11676–88. https://doi.org/10.1074/jbc.M112.441402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Colafrancesco S, Ciccacci C, Priori R, Latini A, Picarelli G, Arienzo F, et al. STAT4, TRAF3IP2, IL10, and HCP5 polymorphisms in Sjogren’s syndrome: association with disease susceptibility and clinical aspects. J Immunol Res. 2019;2019:7682827. https://doi.org/10.1155/2019/7682827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81971542, 82171771, 82271854, 82004171, 82071817), Young Elite Scientist Sponsorship Program by CACM (CACM-2020-QNRC2-05), Hong Kong Research Grants Council General Research Fund (17113319, 17103821, 17111222) and Theme-Based Research Scheme (T12-703/19R), Shenzhen Science and Technology Program (YCYJ20210324114602008).

Author information

Authors and Affiliations

Authors

Contributions

JT and BZ performed the experiments, analyzed the data, and wrote the paper; QY, XS and CL performed the experiments; NP, BZ, MH, FX, WX and MC analyzed the data; KR, SW and LL designed the study and revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ke Rui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no financial conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Zhang, B., Yuan, Q. et al. GITRL impairs the immunosuppressive function of MDSCs via PTEN-mediated signaling pathway in experimental Sjögren syndrome. Inflamm. Res. 71, 1577–1588 (2022). https://doi.org/10.1007/s00011-022-01660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01660-5

Keywords

Navigation