Skip to main content
Log in

The effect of immunomodulatory properties of naringenin on the inhibition of inflammation and oxidative stress in autoimmune disease models: a systematic review and meta-analysis of preclinical evidence

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background/objective

Naringenin is a member of the flavonoid family that can perform many biological processes to treat a wide range of inflammatory diseases and pathological conditions related to oxidative stress (OS). Naringenin immunomodulatory activities have been the subject of recent research as an effective alternative treatment for autoimmune disorders. The effects of naringenin on the levels of inflammatory biomarkers and OS factors in animal models of autoimmune disorders (ADs) were studied in this meta-analysis.

Methods

Up until January 2022, electronic databases such as Cochrane Library and EMBASE, PubMed, Web of Science, and Scopus were used to conduct a comprehensive literature search in English language. To evaluate the effect of naringenin on inflammatory mediators, such as TNF-α, IL-6, IL-β, IFN-γ, NF-κB, and nitric oxide, and OS biomarkers, such as CAT, SOD, GPx, GSH and MDA, in AD models, we measured the quality assessment and heterogeneity test using the PRISMA checklist protocol and I2 statistic, respectively. A random-effects model was employed based on the heterogeneity test, and then pooled data were standardized as mean difference (SMD) with a 95% confident interval (CI).

Results

We excluded all clinical trials, cell experiment studies, animal studies with different parameters, non-autoimmune disease models, and an inadequate series of studies for quantitative synthesis. Finally, from 627 potentially reports, 12 eligible studies were included in the meta-analysis. Data were collected from several groups. Of these, 153 were in the naringenin group and 149 were in the control group. Our meta-analysis of the pooled data for the parameters of inflammation and OS indicated that naringenin significantly reduced the levels of NF-κB (SMD − 3.77, 95% CI [− 6.03 to − 1.51]; I2 = 80.1%, p = 0.002), IFN-γ (SMD − 6.18, 95% CI [− 8.73 to − 3.62]; I2 = 53.7%, p = 0.115), and NO (SMD − 3.97, 95% CI [− 5.50 to − 2.45]; I2 = 73.4%, p = 0.005), IL-1β (SMD − 4.23, 95% CI [− 5.09 to − 3.37]; I2 = 0.0%, p = 0.462), IL-6 (SMD − 5.84, 95% CI [− 7.83 to − 3.85]; I2 = 86.5%, p < 0.001), and TNF-α (SMD − 5.10, 95% CI [− 6.34 to − 3.86]; I2 = 74.7%, p < 0.001). These findings also demonstrated the efficacy of naringenin on increasing the levels of CAT (SMD 4.19, 95% CI [1.33 to 7.06]; I2 = 79.9%, p = 0.007), GSH (SMD 4.58, 95% CI [1.64 to 7.51]; I2 = 90.5%, p < 0.001), and GPx (SMD 9.65, 95% CI [2.56 to 16.74]; I2 = 86.6%, p = 0.001) and decreasing the levels of MDA (SMD − 3.65, 95% CI [− 4.80 to − 2.51]; I2 = 69.4%, p = 0.001) than control groups. However, treatment with naringenin showed no statistically difference in SOD activity (SMD 1.89, 95% CI [− 1.11 to 4.89]; I2 = 93.6%, p < 0.001).

Conclusion

Overall, our findings revealed the immunomodulatory potential of naringenin as an alternative treatment on inhibition of inflammation and OS in several autoimmune-related diseases. Nevertheless, regarding the limitation of clinical trials, strong preclinical models and clinical settings in the future are needed that address the effects of naringenin on ADs. Before large-scale clinical studies, precise human pharmacokinetic investigations are required to determine the dosage ranges and evaluate the initial safety profile of naringenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Investig. 2015;125:2228–33.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Research IoMCoWsH. Women’s health research: progress, pitfalls, and promise. Washington, DC: National Academies Press; 2010.

    Google Scholar 

  3. Tavakolpour S. Towards personalized medicine for patients with autoimmune diseases: opportunities and challenges. Immunol Lett. 2017;190:130–8.

    Article  CAS  PubMed  Google Scholar 

  4. O’prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.

    Article  PubMed  Google Scholar 

  5. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013; 2013.

  6. Faramarzi F, Alimohammadi M, Rahimi A, Alizadeh-Navaei R, Shakib RJ, Rafiei A. Naringenin induces intrinsic and extrinsic apoptotic signaling pathways in cancer cells: A systematic review and meta-analysis of in vitro and in vivo data. Nutr Res. 2022. https://doi.org/10.1016/j.nutres.2022.05.003.

    Article  PubMed  Google Scholar 

  7. Gutierrez-Merino C, Lopez-Sanchez C, Lagoa R, Samhan-Arias AK, Bueno C, Garcia-Martinez V. Neuroprotective actions of flavonoids. Curr Med Chem. 2011;18:1195–212.

    Article  CAS  PubMed  Google Scholar 

  8. Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, et al. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J. 2003;17:1–21.

    Google Scholar 

  9. Park S, Sapkota K, Kim S, Kim H, Kim S. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol. 2011;164:1008–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sternberg Z, Chadha K, Lieberman A, Drake A, Hojnacki D, Weinstock-Guttman B, et al. Immunomodulatory responses of peripheral blood mononuclear cells from multiple sclerosis patients upon in vitro incubation with the flavonoid luteolin: additive effects of IFN-β. J Neuroinflammation. 2009;6:1–8.

    Article  Google Scholar 

  11. Rodriguez-Canales M, Martinez-Galero E, Nava-Torres AD, Sanchez-Torres LE, Garduño-Siciliano L, Canales-Martinez MM, et al. Anti-Inflammatory and antioxidant activities of the methanolic extract of Cyrtocarpa procera bark reduces the severity of ulcerative colitis in a chemically induced colitis model. Mediators Inflamm. 2020;2020:1–11.

    Article  Google Scholar 

  12. Manchope MF, Artero NA, Fattori V, Mizokami SS, Pitol DL, Issa JP, et al. Naringenin mitigates titanium dioxide (TiO 2)-induced chronic arthritis in mice: role of oxidative stress, cytokines, and NFκB. Inflamm Res. 2018;67:997–1012.

    Article  CAS  PubMed  Google Scholar 

  13. Al-Rejaie SS, Abuohashish HM, Al-Enazi MM, Al-Assaf AH, Parmar MY, Ahmed MM. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J Gastroenterol: WJG. 2013;19:5633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan R, Pan T, Zhu A-L, Zhang M-H. Anti-inflammatory and anti-arthritic properties of naringenin via attenuation of NF-κB and activation of the heme oxygenase (HO)-1/related factor 2 pathway. Pharmacol Rep. 2017;69:1021–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Qi Y, Niu X, Tang H, Meydani SN, Wu D. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem. 2018;54:130–9.

    Article  CAS  PubMed  Google Scholar 

  16. Abrego-Peredo A, Romero-Ramirez H, Espinosa E, Lopez-Herrera G, Garcia-Garcia F, Flores-Munoz M, et al. Naringenin mitigates autoimmune features in lupus-prone mice by modulation of T-cell subsets and cytokines profile. PLoS ONE. 2020;15: e0233138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wojnar W, Zych M, Kaczmarczyk-Sedlak I. Antioxidative effect of flavonoid naringenin in the lenses of type 1 diabetic rats. Biomed Pharmacother. 2018;108:974–84.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y-R, Chen D-Y, Chu C-L, Li S, Chen Y-K, Wu C-L, et al. Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis. J Nutr Biochem. 2015;26:1467–78.

    Article  CAS  PubMed  Google Scholar 

  19. Naeini F, Namkhah Z, Ostadrahimi A, Tutunchi H, Hosseinzadeh-Attar MJ. A comprehensive systematic review of the effects of naringenin, a citrus-derived flavonoid, on risk factors for nonalcoholic fatty liver disease. Adv Nutr. 2021;12:413–28.

    Article  PubMed  Google Scholar 

  20. Rahimi A, Alimohammadi M, Faramarzi F, Alizadeh-Navaei R, Rafiei A. The effects of apigenin administration on the inhibition of inflammatory responses and oxidative stress in the lung injury models: a systematic review and meta-analysis of preclinical evidence. Inflammopharmacology. 2022. https://doi.org/10.1007/s10787-022-00994-0.

    Article  PubMed  Google Scholar 

  21. Liberati A, Altman D, Tetzlaff J. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. BMJ. 2009; 339.

  22. Hooijmans CR, Rovers MM, de Vries R, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:1–9.

    Article  Google Scholar 

  23. Amaro MI, Rocha J, Vila-Real H, Eduardo-Figueira M, Mota-Filipe H, Sepodes B, et al. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int. 2009;42:1010–7.

    Article  Google Scholar 

  24. Chaen Y, Yamamoto Y, Suzuki T. Naringenin promotes recovery from colonic damage through suppression of epithelial tumor necrosis factor–α production and induction of M2-type macrophages in colitic mice. Nutr Res. 2019;64:82–92.

    Article  CAS  PubMed  Google Scholar 

  25. Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, et al. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br J Nutr. 2013;110:599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hajizadeh A, Abtahi Froushani S, Tehrani A, Azizi S, Bani Hashemi S. Effects of Naringenin on experimental rheumatoid arthritis in Wistar rats. Archives of Razi Institute; 2020.

  27. Wang J, Wei T, Gao J, He H, Chang X, Yan T. Effects of Naringenin on inflammation in complete freund’s adjuvant-induced arthritis by regulating Bax/Bcl-2 balance. Inflammation. 2015;38:245–51.

    Article  PubMed  Google Scholar 

  28. Niu X, Sang H, Wang J. Naringenin attenuates experimental autoimmune encephalomyelitis by protecting the intact of blood-brain barrier and controlling inflammatory cell migration. J Nutr Biochem. 2021;89: 108560.

    Article  CAS  PubMed  Google Scholar 

  29. Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys. 2014;559:91–9.

    Article  CAS  PubMed  Google Scholar 

  30. Jin L, Zeng W, Zhang F, Zhang C, Liang W. Naringenin ameliorates acute inflammation by regulating intracellular cytokine degradation. J Immunol. 2017;199:3466–77.

    Article  CAS  PubMed  Google Scholar 

  31. Du G, Jin L, Han X, Song Z, Zhang H, Liang W. Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. Can Res. 2009;69:3205–12.

    Article  CAS  Google Scholar 

  32. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, Borghi SM, Bordignon J, Silva RL, et al. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J Nutr Biochem. 2016;33:8–14.

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida H, Watanabe W, Oomagari H, Tsuruta E, Shida M, Kurokawa M. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J Nutr Biochem. 2013;24:1276–84.

    Article  CAS  PubMed  Google Scholar 

  35. Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, et al. Naringenin reduces inflammatory pain in mice. Neuropharmacology. 2016;105:508–19.

    Article  CAS  PubMed  Google Scholar 

  36. Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, et al. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO− cGMP− PKG− KATPChannel signaling pathway. PLoS ONE. 2016;11: e0153015.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Barbosa DS, et al. Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J Nat Prod. 2015;78:1647–55.

    Article  CAS  PubMed  Google Scholar 

  38. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm 2007; 2007.

  39. Smith AM, Rahman FZ, Hayee BH, Graham SJ, Marks DJ, Sewell GW, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med. 2009;206:1883–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeng W, Jin L, Zhang F, Zhang C, Liang W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res. 2018;135:122–6.

    Article  CAS  PubMed  Google Scholar 

  41. Hartmann RM, Martins MIM, Tieppo J, Fillmann HS, Marroni NP. Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid. Dig Dis Sci. 2012;57:2038–44.

    Article  PubMed  Google Scholar 

  42. Closa D, Folch-Puy E. Oxygen free radicals and the systemic inflammatory response. IUBMB Life. 2004;56:185–91.

    Article  CAS  PubMed  Google Scholar 

  43. Isozaki Y, Yoshida N, Kuroda M, Takagi T, Handa O, Kokura S, et al. Effect of a novel water-soluble vitamin E derivative as a cure for TNBS-induced colitis in rats. Int J Mol Med. 2006;17:497–502.

    CAS  PubMed  Google Scholar 

  44. Yoshikawa T, Ueda S, Naito Y, Takahashi S, Oyamada H, Morita Y, et al. Role of oxygen-derived free radicals in gastric mucosal injury induced by ischemia or ischemia-reperfusion in rats. Free Radical Res Commun. 1989;7:285–91.

    Article  CAS  Google Scholar 

  45. Bitiren M, Karakilcik AZ, Zerin M, Ozardalı I, Selek S, Nazlıgül Y, et al. Protective effects of selenium and vitamin E combination on experimental colitis in blood plasma and colon of rats. Biol Trace Elem Res. 2010;136:87–95.

    Article  CAS  PubMed  Google Scholar 

  46. Ademoglu E, Erbil Y, Tam B, Barbaros U, Ilhan E, Olgac V, et al. Do vitamin E and selenium have beneficial effects on trinitrobenzenesulfonic acid-induced experimental colitis. Dig Dis Sci. 2004;49:102–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jain A, Yadav A, Bozhkov A, Padalko V, Flora S. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Saf. 2011;74:607–14.

    Article  CAS  PubMed  Google Scholar 

  48. Han X, Gao S, Cheng Y, Sun Y, Liu W, Tang L, et al. Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 cardiomyocytes. Biosci Trends. 2012;6:19–25.

    CAS  PubMed  Google Scholar 

  49. Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res. 2012;146:354–9.

    Article  CAS  PubMed  Google Scholar 

  50. Vasanthi P, Nalini G, Rajasekhar G. Role of tumor necrosis factor-alpha in rheumatoid arthritis: a review. APLAR J Rheumatol. 2007;10:270–4.

    Article  Google Scholar 

  51. Pannu A, Goyal RK, Ojha S, Nandave M. Naringenin: a promising flavonoid for herbal treatment of rheumatoid arthritis and associated inflammatory disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. Amsterdam: Elsevier; 2019. p. 343–54.

    Chapter  Google Scholar 

  52. Arend WP. The pathophysiology and treatment of rheumatoid arthritis. Arthritis Rheumatism. 1997;40:595–7.

    Article  CAS  PubMed  Google Scholar 

  53. Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, et al. The role of flavonoids in autoimmune diseases: therapeutic updates. Pharmacol Ther. 2019;194:107–31.

    Article  CAS  PubMed  Google Scholar 

  54. Bayat P, Farshchi M, Yousefian M, Mahmoudi M, Yazdian-Robati R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: a systematic review of preclinical evidence. Int Immunopharmacol. 2021;95: 107562.

    Article  CAS  PubMed  Google Scholar 

  55. Hisamatsu T, Kanai T, Mikami Y, Yoneno K, Matsuoka K, Hibi T. Immune aspects of the pathogenesis of inflammatory bowel disease. Pharmacol Ther. 2013;137:283–97.

    Article  CAS  PubMed  Google Scholar 

  56. Hundorfean G, Neurath MF, Mudter J. Functional relevance of T helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:180–6.

    Article  PubMed  Google Scholar 

  57. Azuma T, Shigeshiro M, Kodama M, Tanabe S, Suzuki T. Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J Nutr. 2013;143:827–34.

    Article  CAS  PubMed  Google Scholar 

  58. Lee J-H, Lee B, Lee H-S, Bae E-A, Lee H, Ahn Y-T, et al. Lactobacillus suntoryeus inhibits pro-inflammatory cytokine expression and TLR-4-linked NF-κB activation in experimental colitis. Int J Colorectal Dis. 2009;24:231–7.

    Article  PubMed  Google Scholar 

  59. Fort MM, Mozaffarian A, Stöver AG, da Silva CJ, Johnson DA, Crane RT, et al. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J Immunol. 2005;174:6416–23.

    Article  CAS  PubMed  Google Scholar 

  60. Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011;25:243–54.

    Article  CAS  PubMed  Google Scholar 

  61. Niedbala W, Cai B, Liew F. Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis. 2006;65:iii37–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No sources of support was received.

Author information

Authors and Affiliations

Authors

Contributions

MA: investigation, conceptualization, writing—original draft preparation, methodology. AR: writing—review and editing, data curation. FF: writing-review, methodology. RA-N: formal analysis. AR: writing—review and editing, project administration, resources.

Corresponding author

Correspondence to Alireza Rafiei.

Ethics declarations

Conflicts of interest

The authors declare that not conflict of interest exists with the publication of this article.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimohammadi, M., Mohammad, R.N., Rahimi, A. et al. The effect of immunomodulatory properties of naringenin on the inhibition of inflammation and oxidative stress in autoimmune disease models: a systematic review and meta-analysis of preclinical evidence. Inflamm. Res. 71, 1127–1142 (2022). https://doi.org/10.1007/s00011-022-01599-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01599-7

Keywords

Navigation