Skip to main content

Advertisement

Log in

Sepsis-induced myocardial dysfunction: the role of mitochondrial dysfunction

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Sepsis-induced myocardial dysfunction (SIMD) is a condition manifested by an intrinsic myocardial systolic and diastolic dysfunction during sepsis, which is associated with worse clinical outcomes and a higher mortality.

Materials and methods

Several pathophysiological mechanisms including mitochondrial dysfunction, abnormal body immune reaction, metabolic reprogramming, excessive production of reactive oxygen species (ROS), and disorder of calcium regulation have been involved in SIMD. Mitophagy has potential role in protecting myocardial cells in sepsis, especially in survivors.

Conclusion

In the current review, we focus on the role of mitochondrial dysfunction and other mitochondria-related mechanisms including immunologic imbalance, energetic reprogramming, mitophagy, and pyroptosis in the mechanisms of SIMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta. 2019;1865(4):759–73. https://doi.org/10.1016/j.bbadis.2018.10.011.

    Article  CAS  Google Scholar 

  2. Wilhelm J, Hettwer S, Schuermann M, Bagger S, Gerhardt F, Mundt S, et al. Severity of cardiac impairment in the early stage of community-acquired sepsis determines worse prognosis. Clin Res Cardiol. 2013;102(10):735–44. https://doi.org/10.1007/s00392-013-0584-z.

    Article  CAS  PubMed  Google Scholar 

  3. Van Wyngene L, Vandewalle J, Libert C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med. 2018. https://doi.org/10.15252/emmm.201708712.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016;594(3):509–25. https://doi.org/10.1113/jp271301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sack MN. Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am J Physiol Heart Circ Physiol. 2011;301(6):H2191–7. https://doi.org/10.1152/ajpheart.00199.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu YC, Yu MM, Shou ST, Chai YF. Sepsis-induced cardiomyopathy: mechanisms and treatments. Front Immunol. 2017;8:1021. https://doi.org/10.3389/fimmu.2017.01021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Z, Deng W, Kang R, Xie M, Billiar T, Wang H, et al. Plumbagin protects mice from lethal sepsis by modulating immunometabolism upstream of PKM2. Mol Med. 2016;22:162–72. https://doi.org/10.2119/molmed.2015.00250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalbitz M, Fattahi F, Grailer JJ, Jajou L, Malan EA, Zetoune FS, et al. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB J. 2016;30(12):3997–4006. https://doi.org/10.1096/fj.201600728R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chagnon F, Bentourkia M, Lecomte R, Lessard M, Lesur O. Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit Care Med. 2006;34(1):127–33. https://doi.org/10.1097/01.ccm.0000190622.02222.df.

    Article  CAS  PubMed  Google Scholar 

  10. Sun LJ, Qiao W, Xiao YJ, Cui L, Wang X, Ren WD. Naringin mitigates myocardial strain and the inflammatory response in sepsis-induced myocardial dysfunction through regulation of PI3K/AKT/NF-κB pathway. Int Immunopharmacol. 2019;75:105782. https://doi.org/10.1016/j.intimp.2019.105782.

    Article  CAS  PubMed  Google Scholar 

  11. Perez MJ, Quintanilla RA. Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol. 2017;426(1):1–7. https://doi.org/10.1016/j.ydbio.2017.04.018.

    Article  CAS  PubMed  Google Scholar 

  12. Kwong JQ, Molkentin JD. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab. 2015;21(2):206–14. https://doi.org/10.1016/j.cmet.2014.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hurst S, Hoek J, Sheu SS. Mitochondrial Ca(2+) and regulation of the permeability transition pore. J Bioenerg Biomembr. 2017;49(1):27–47. https://doi.org/10.1007/s10863-016-9672-x.

    Article  CAS  PubMed  Google Scholar 

  14. Jonas EA, Porter GA Jr, Beutner G, Mnatsakanyan N, Alavian KN. Cell death disguised: the mitochondrial permeability transition pore as the c-subunit of the F(1)F(O) ATP synthase. Pharmacol Res. 2015;99:382–92. https://doi.org/10.1016/j.phrs.2015.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015;95(4):1111–55. https://doi.org/10.1152/physrev.00001.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Elrod JW, Molkentin JD. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ J. 2013;77(5):1111–22.

    Article  CAS  Google Scholar 

  17. Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial permeability transition: new findings and persisting uncertainties. Trends Cell Biol. 2016;26(9):655–67. https://doi.org/10.1016/j.tcb.2016.04.006.

    Article  CAS  PubMed  Google Scholar 

  18. Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 2009;46(6):821–31. https://doi.org/10.1016/j.yjmcc.2009.02.021.

    Article  CAS  PubMed  Google Scholar 

  19. Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: a molecular lesion with multiple drug targets. Trends Pharmacol Sci. 2019;40(1):50–70. https://doi.org/10.1016/j.tips.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  20. Kim B, Takeuchi A, Koga O, Hikida M, Matsuoka S. Mitochondria Na(+)-Ca (2+) exchange in cardiomyocytes and lymphocytes. Adv Exp Med Biol. 2013;961:193–201. https://doi.org/10.1007/978-1-4614-4756-6_16.

    Article  CAS  PubMed  Google Scholar 

  21. Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P, Song J, et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 2015;12(1):23–34. https://doi.org/10.1016/j.celrep.2015.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175(6):901–11. https://doi.org/10.1083/jcb.200608073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal. 2015;22(12):995–1019. https://doi.org/10.1089/ars.2014.6223.

    Article  CAS  PubMed  Google Scholar 

  24. De Pinto VD, Palmieri F. Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). J Bioenerg Biomembr. 1992;24(1):21–6.

    Article  Google Scholar 

  25. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA. 2015;112(6):1779–84. https://doi.org/10.1073/pnas.1410723112.

    Article  CAS  PubMed  Google Scholar 

  26. Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H, et al. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem. 2015;290(14):9150–61. https://doi.org/10.1074/jbc.M114.622514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arbel N, Ben-Hail D, Shoshan-Barmatz V. Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem. 2012;287(27):23152–61. https://doi.org/10.1074/jbc.M112.345918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation. 2016;133(13):1249–63. https://doi.org/10.1161/circulationaha.115.020502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang WX, He BM, Wu Y, Qiao JF, Peng ZY. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci. 2019;217:8–15. https://doi.org/10.1016/j.lfs.2018.11.055.

    Article  CAS  PubMed  Google Scholar 

  30. Bai P, Nagy L, Fodor T, Liaudet L, Pacher P. Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends in endocrinology and metabolism: TEM. 2015;26(2):75–83. https://doi.org/10.1016/j.tem.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  31. Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 2006;48(2):377–85. https://doi.org/10.1016/j.jacc.2006.02.069.

    Article  CAS  PubMed  Google Scholar 

  32. Lee I, Huttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochem Biophys Acta. 2014;1842(9):1579–86. https://doi.org/10.1016/j.bbadis.2014.05.031.

    Article  CAS  PubMed  Google Scholar 

  33. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. https://doi.org/10.1042/bj20110162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem. 2015;290(1):209–27. https://doi.org/10.1074/jbc.M114.619072.

    Article  CAS  PubMed  Google Scholar 

  35. Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, et al. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J. 2009;96(4):1388–98. https://doi.org/10.1016/j.bpj.2008.10.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu XR, Cao L, Li T, Chen LL, Yu YY, Huang WJ, et al. Propofol attenuates H(2)O(2)-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes. Apoptosis. 2017;22(5):639–46. https://doi.org/10.1007/s10495-017-1349-3.

    Article  CAS  PubMed  Google Scholar 

  37. Moskowitz A, Andersen LW, Huang DT, Berg KM, Grossestreuer AV, Marik PE, et al. Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Crit Care. 2018;22(1):283. https://doi.org/10.1186/s13054-018-2217-4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radical Biol Med. 2014;76:208–26. https://doi.org/10.1016/j.freeradbiomed.2014.07.046.

    Article  CAS  Google Scholar 

  39. Li S, Wu H, Han D, Ma S, Fan W, Wang Y, et al. A novel mechanism of mesenchymal stromal cell-mediated protection against sepsis: restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS. Oxid Med Cell Longev. 2018;2018:3537609. https://doi.org/10.1155/2018/3537609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24. https://doi.org/10.1016/j.molimm.2018.09.010.

    Article  CAS  PubMed  Google Scholar 

  41. Chang M, Hamilton JA, Scholz GM, Elsegood CL. Glycolytic control of adjuvant-induced macrophage survival: role of PI3K, MEK1/2, and Bcl-2. J Leukoc Biol. 2009;85(6):947–56. https://doi.org/10.1189/jlb.0908522.

    Article  CAS  PubMed  Google Scholar 

  42. Zuo H, Wan Y. Metabolic reprogramming in mitochondria of myeloid cells. Cells. 2019. https://doi.org/10.3390/cells9010005.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166(1):63–76. https://doi.org/10.1016/j.cell.2016.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14. https://doi.org/10.1038/nrm3028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111(9):1208–21. https://doi.org/10.1161/circresaha.112.265819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy. 2012;8(10):1462–76. https://doi.org/10.4161/auto.21211.

    Article  CAS  PubMed  Google Scholar 

  47. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet. 2011;20(9):1726–37. https://doi.org/10.1093/hmg/ddr048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen Y, Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471–5. https://doi.org/10.1126/science.1231031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31. https://doi.org/10.1038/ncb2012.

    Article  CAS  PubMed  Google Scholar 

  50. Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal. 2011;14(10):1939–51. https://doi.org/10.1089/ars.2010.3779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith MA, Schnellmann RG. Calpains, mitochondria, and apoptosis. Cardiovasc Res. 2012;96(1):32–7. https://doi.org/10.1093/cvr/cvs163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J. 2000;351(Pt 1):183–93. https://doi.org/10.1042/0264-6021:3510183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu H, Santo A, Jia Z, Robert LY. GPx4 in bacterial infection and polymicrobial sepsis: involvement of ferroptosis and pyroptosis. React Oxyg Species. 2019;7(21):154–60. https://doi.org/10.20455/ros.2019.835.

    Article  CAS  Google Scholar 

  54. Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Biol Med. 2003;34(2):145–69.

    Article  CAS  Google Scholar 

  55. Zang Q, Maass DL, Tsai SJ, Horton JW. Cardiac mitochondrial damage and inflammation responses in sepsis. Surg Infect. 2007;8(1):41–54. https://doi.org/10.1089/sur.2006.033.

    Article  Google Scholar 

  56. Kumar V. Correction to: Immunometabolism: another road to sepsis and its therapeutic targeting. Inflammation. 2019;42(3):789. https://doi.org/10.1007/s10753-019-00970-x.

    Article  PubMed  Google Scholar 

  57. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776–87. https://doi.org/10.1038/nri2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hotchkiss RS, Osmon SB, Chang KC, Wagner TH, Coopersmith CM, Karl IE. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J Immunol. 2005;174(8):5110–8. https://doi.org/10.4049/jimmunol.174.8.5110.

    Article  CAS  PubMed  Google Scholar 

  59. Chang KC, Unsinger J, Davis CG, Schwulst SJ, Muenzer JT, Strasser A, et al. Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J. 2007;21(3):708–19. https://doi.org/10.1096/fj.06-6805com.

    Article  CAS  PubMed  Google Scholar 

  60. Cavaillon JM, Adib-Conquy M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care. 2006;10(5):233. https://doi.org/10.1186/cc5055.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007;204(6):1463–74. https://doi.org/10.1084/jem.20062602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–605. https://doi.org/10.1001/jama.2011.1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74. https://doi.org/10.1038/nri3552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17(3):151–64. https://doi.org/10.1038/nri.2016.147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge. Cell reports. 2014;8(2):570–82. https://doi.org/10.1016/j.celrep.2014.06.028.

    Article  CAS  PubMed  Google Scholar 

  66. Drifte G, Dunn-Siegrist I, Tissieres P, Pugin J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit Care Med. 2013;41(3):820–32. https://doi.org/10.1097/CCM.0b013e318274647d.

    Article  CAS  PubMed  Google Scholar 

  67. Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, et al. Lipid Peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24(1):97-108.e4. https://doi.org/10.1016/j.chom.2018.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu JJ, Li Y, Yang MS, Chen R, Cen CQ. SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis. Arch Biochem Biophys. 2020;695:108611. https://doi.org/10.1016/j.abb.2020.108611.

    Article  CAS  PubMed  Google Scholar 

  69. Melis JP, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PW. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Mol Immunol. 2015;67(2):117–30. https://doi.org/10.1016/j.molimm.2015.01.028.

    Article  CAS  PubMed  Google Scholar 

  70. Cheng SC, Scicluna BP, Arts RJ, Gresnigt MS, Lachmandas E, Giamarellos-Bourboulis EJ, et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol. 2016;17(4):406–13. https://doi.org/10.1038/ni.3398.

    Article  CAS  PubMed  Google Scholar 

  71. Hall MW, Knatz NL, Vetterly C, Tomarello S, Wewers MD, Volk HD, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32. https://doi.org/10.1007/s00134-010-2088-x.

    Article  CAS  PubMed  Google Scholar 

  72. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390(6658):350–1. https://doi.org/10.1038/37022.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J. Autophagy and mitophagy in cellular damage control. Redox biology. 2013;1(1):19–23. https://doi.org/10.1016/j.redox.2012.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. https://doi.org/10.1126/science.1160809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS, Rathmell JC, et al. Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J. 2004;18(11):1303–5. https://doi.org/10.1096/fj.03-1001fje.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses. Mol Immunol. 2015;68(2):513–9. https://doi.org/10.1016/j.molimm.2015.07.034.

    Article  CAS  PubMed  Google Scholar 

  77. Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell. 2016;166(6):1512-25.e12. https://doi.org/10.1016/j.cell.2016.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi SY, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013;230(4):350–5. https://doi.org/10.1002/path.4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513(7519):559–63. https://doi.org/10.1038/nature13490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu TF, Vachharajani VT, Yoza BK, McCall CE. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem. 2012;287(31):25758–69. https://doi.org/10.1074/jbc.M112.362343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu TF, Vachharajani V, Millet P, Bharadwaj MS, Molina AJ, McCall CE. Sequential actions of SIRT1-RELB-SIRT3 coordinate nuclear-mitochondrial communication during immunometabolic adaptation to acute inflammation and sepsis. J Biol Chem. 2015;290(1):396–408. https://doi.org/10.1074/jbc.M114.566349.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Nos. 81772110, 82072202).

Author information

Authors and Affiliations

Authors

Contributions

Hang Yang contributed to design and draft the manuscript. And Zhaocai Zhang contributed to design and review the manuscript.

Corresponding author

Correspondence to Zhaocai Zhang.

Ethics declarations

Conflict of interest

Author Hang Yang declares that she has no conflict of interest. Author Zhaocai Zhang declares that he has no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, Z. Sepsis-induced myocardial dysfunction: the role of mitochondrial dysfunction. Inflamm. Res. 70, 379–387 (2021). https://doi.org/10.1007/s00011-021-01447-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01447-0

Keywords

Navigation