Skip to main content
Log in

Characteristics of voltage-gated potassium currents in monosodium urate induced gouty arthritis in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To evaluate the role of K+ channels in pain following gouty arthritis.

Methods

The model of acute gouty arthritis was induced by monosodium urate (MSU) in mice. The swelling degree was determined by measuring the circumference of the ankle joint. Mechanical hyperalgesia was detected by von Frey filaments. Two types of K+ currents, A-type currents (IA) and delayed rectifier currents (IK), were recorded in dorsal root ganglion (DRG) neurons using patch-clamp techniques.

Results

The swelling degree reached its maximum at 10 h and the minimum pain threshold was maintained between 8 and 48 h after MSU treatment in mice. The amplitudes of IA and IK in DRG neurons were moderately increased on day 1 after MSU treatment, and then, they were gradually decreased with times and reached their minimums on day 4 (for IA) or 5 (for IK). Compared with control group, the activation curve of IA was significantly shifted to more positive potential and the recovery time of IA from inactivation was markedly prolonged, but inactivation and frequency dependence of IA appeared unaffected in MSU-treated group. Additionally, no change was observed in the activation curve of IK after MSU treatment. The excitability was significantly higher in the MSU group than in the control group.

Conclusions

MSU-induced gout pain may be related to the hyperexcitability of DRG neurons elicited by decreasing K+ currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41. https://doi.org/10.1002/art.30520.

    Article  PubMed  Google Scholar 

  2. Abhishek A, Roddy E, Doherty M. Gout—a guide for the general and acute physicians. Clin Med (Lond). 2017;17(1):54–9. https://doi.org/10.7861/clinmedicine.17-1-54.

    Article  Google Scholar 

  3. Richette P, Bardin T. Gout. Lancet. 2010;375(9711):318–28. https://doi.org/10.1016/S0140-6736(09)60883-7.

    Article  CAS  Google Scholar 

  4. Lee YM, Shon EJ, Kim OS, Kim DS. Effects of Mollugo pentaphylla extract on monosodium urate crystal-induced gouty arthritis in mice. BMC Complement Altern Med. 2017;17(1):447. https://doi.org/10.1186/s12906-017-1955-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hainer BL, Matheson E, Wilkes RT. Diagnosis, treatment, and prevention of gout. Am Fam Physician. 2014;90(12):831–6.

    PubMed  Google Scholar 

  6. Aran S, Malekzadeh S, Seifirad S. A double-blind randomized controlled trial appraising the symptom-modifying effects of colchicine on osteoarthritis of the knee. Clin Exp Rheumatol. 2011;29(3):513–8.

    CAS  PubMed  Google Scholar 

  7. Neogi T. Clinical practice. Gout. N Engl J Med. 2011;364(5):443–52. https://doi.org/10.1056/NEJMcp1001124.

    Article  CAS  PubMed  Google Scholar 

  8. Doss HM, Dey C, Sudandiradoss C, Rasool MK. Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats. Life Sci. 2016;148:201–10. https://doi.org/10.1016/j.lfs.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  9. Kuncl RW, Duncan G, Watson D, Alderson K, Rogawski MA, Peper M. Colchicine myopathy and neuropathy. N Engl J Med. 1987;316(25):1562–8. https://doi.org/10.1056/NEJM198706183162502.

    Article  CAS  PubMed  Google Scholar 

  10. Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039–52. https://doi.org/10.1016/S0140-6736(16)00346-9.

    Article  CAS  PubMed  Google Scholar 

  11. Hall CJ, Sanderson LE, Lawrence LM, Pool B, van der Kroef M, Ashimbayeva E, et al. Blocking fatty acid-fueled mROS production within macrophages alleviates acute gouty inflammation. J Clin Invest. 2018;128(5):1752–71. https://doi.org/10.1172/JCI94584.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F. The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurones. J Physiol. 2008;586(21):5101–18. https://doi.org/10.1113/jphysiol.2008.159384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Everill B, Rizzo MA, Kocsis JD. Morphologically identified cutaneous afferent DRG neurons express three different potassium currents in varying proportions. J Neurophysiol. 1998;79(4):1814–24. https://doi.org/10.1152/jn.1998.79.4.1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu L, Simon SA. Modulation of IA currents by capsaicin in rat trigeminal ganglion neurons. J Neurophysiol. 2003;89(3):1387–401. https://doi.org/10.1152/jn.00210.2002.

    Article  CAS  PubMed  Google Scholar 

  15. Vydyanathan A, Wu ZZ, Chen SR, Pan HL. A-type voltage-gated K+ currents influence firing properties of isolectin B4-positive but not isolectin B4-negative primary sensory neurons. J Neurophysiol. 2005;93(6):3401–9. https://doi.org/10.1152/jn.01267.2004.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao Y, Wu Y, Zhao B, Xia Z. Decreased voltage-gated potassium currents in rat dorsal root ganglion neurons after chronic constriction injury. NeuroReport. 2016;27(2):104–9. https://doi.org/10.1097/WNR.0000000000000505.

    Article  PubMed  Google Scholar 

  17. Abdulla FA, Smith PA. Axotomy- and autotomy-induced changes in Ca2+ and K+ channel currents of rat dorsal root ganglion neurons. J Neurophysiol. 2001;85(2):644–58. https://doi.org/10.1152/jn.2001.85.2.644.

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi Y, Takimoto K, Chancellor MB, Erickson KA, Erickson VL, Kirimoto T, et al. Bladder hyperactivity and increased excitability of bladder afferent neurons associated with reduced expression of Kv1.4 alpha-subunit in rats with cystitis. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1661–R16701670. https://doi.org/10.1152/ajpregu.91054.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi R, Yoshizawa T, Yunoki T, Tyagi P, Naito S, de Groat WC, et al. Hyperexcitability of bladder afferent neurons associated with reduction of Kv1.4 alpha-subunit in rats with spinal cord injury. J Urol. 2013;190(6):2296–304. https://doi.org/10.1016/j.juro.2013.07.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu GY, Winston JH, Shenoy M, Yin H, Pasricha PJ. Enhanced excitability and suppression of A-type K+ current of pancreas-specific afferent neurons in a rat model of chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2006;291(3):G424–G431431. https://doi.org/10.1152/ajpgi.00560.2005.

    Article  CAS  PubMed  Google Scholar 

  21. Fan N, Donnelly DF, LaMotte RH. Chronic compression of mouse dorsal root ganglion alters voltage-gated sodium and potassium currents in medium-sized dorsal root ganglion neurons. J Neurophysiol. 2011;106(6):3067–72. https://doi.org/10.1152/jn.00752.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeda M, Tsuboi Y, Kitagawa J, Nakagawa K, Iwata K, Matsumoto S. Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol Pain. 2011;7:5. https://doi.org/10.1186/1744-8069-7-5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coderre TJ, Wall PD. Ankle joint urate arthritis (AJUA) in rats: an alternative animal model of arthritis to that produced by Freund's adjuvant. Pain. 1987;28(3):379–93.

    Article  CAS  Google Scholar 

  24. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.

    Article  CAS  Google Scholar 

  25. Murakami M, Nakagawasai O, Suzuki T, Mobarakeh II, Sakurada Y, Murata A, et al. Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel alpha 1 subunits in the dorsal horn of spinal cord in mice. Brain Res. 2004;1024(1–2):122–9. https://doi.org/10.1016/j.brainres.2004.07.066.

    Article  CAS  PubMed  Google Scholar 

  26. Qu L, Caterina MJ. Enhanced excitability and suppression of A-type K+ currents in joint sensory neurons in a murine model of antigen-induced arthritis. Sci Rep. 2016;6:28899. https://doi.org/10.1038/srep28899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsantoulas C. Emerging potassium channel targets for the treatment of pain. Curr Opin Support Palliat Care. 2015;9(2):147–54. https://doi.org/10.1097/SPC.0000000000000131.

    Article  PubMed  Google Scholar 

  28. Safronov BV, Bischoff U, Vogel W. Single voltage-gated K+ channels and their functions in small dorsal root ganglion neurones of rat. J Physiol. 1996;493(Pt 2):393–408.

    Article  CAS  Google Scholar 

  29. Szelenyi I. Flupirtine, a re-discovered drug, revisited. Inflamm Res. 2013;62(3):251–8. https://doi.org/10.1007/s00011-013-0592-5.

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi H, Iwata M, Tsuchimori N, Matsumoto T. Activation of peripheral KCNQ channels attenuates inflammatory pain. Mol Pain. 2014;10:15. https://doi.org/10.1186/1744-8069-10-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Z, Li L, Xie F, Du J, Zuo Y, Frost JA, et al. Activation of KCNQ channels suppresses spontaneous activity in dorsal root ganglion neurons and reduces chronic pain after spinal cord injury. J Neurotrauma. 2017;34(6):1260–70. https://doi.org/10.1089/neu.2016.4789.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqin Zhang.

Ethics declarations

Conflict of Interest

The authors have declared no conflicts of interest

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Qiu, J., Wang, X. et al. Characteristics of voltage-gated potassium currents in monosodium urate induced gouty arthritis in mice. Inflamm. Res. 69, 589–598 (2020). https://doi.org/10.1007/s00011-020-01343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01343-z

Keywords

Navigation