Skip to main content
Log in

Adoptive transfer of IFN-γ-induced M-MDSCs promotes immune tolerance to allografts through iNOS pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim and objective

Efficient production of monocytic myeloid-derived suppressor cells (M-MDSCs) with stable immunosuppressive function is crucial for immunomodulatory cell therapy for many diseases such as transplant rejection, graft-versus-host disease and autoimmune diseases.

Methods

We used M-CSF as growth factor for myeloid progenitor cell differentiation and activated them with IFN-γ during early stage in vitro to produce M-MDSCs. The cell phenotypes were determined using flow cytometry, the immunosuppressive function and mechanisms were determined by skin grafted mouse models and genetic modified mice.

Results

IFN-γ treatment endows these cell strong immunosuppressive function by inhibition of T cell proliferation and cytokine productions. The phenotype of these cells also changed towards M-MDSCs. IFN-γ significantly upregulated iNOS expression in these M-MDSCs and inhibition of this molecule significantly reversed their immune regulatory function. The functional stability of induced M-MDSCs by IFN-γ was tested in vivo by transferring them to alloskin-grafted mice. Adoptive transfer of these cells significantly prolonged allograft survival and promoted immune tolerance, whereas iNOS deficiency in these cells reversed this effect.

Conclusions

We established one M-MDSCs-inducting protocol with the combination of M-CSF and IFN-γ in vitro. M-CSF+IFN-γ-induced M-MDSCs are promising to prevent graft rejection by immune regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang F, et al. The effect of immunosuppressive drugs on MDSCs in transplantation. J Immunol Res. 2018;2018:16.

    Google Scholar 

  2. Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  3. Peranzoni E, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010;22(2):238–44.

    Article  CAS  PubMed  Google Scholar 

  4. Bronte V, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu T, Gabrilovich DI. Molecular pathways: tumor infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clin Cancer Res. 2012;18:4882.

    Google Scholar 

  6. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Wilde V, et al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant. 2009;9(9):2034–47.

    Article  PubMed  CAS  Google Scholar 

  9. Scalea JR, et al. Myeloid-derived suppressor cells and their potential application in transplantation. Transplantation. 2018;102(3):359–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Q, et al. The role and potential therapeutic application of myeloid-derived suppressor cells in allo- and autoimmunity. Mediators Inflamm. 2015;2015:421927.

    PubMed  PubMed Central  Google Scholar 

  11. Zhou Z, et al. Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells. 2010;28(3):620–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu WC, et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci USA. 2014;111(11):4221–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010;185(4):2273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dolcetti L, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010;40(1):22–35.

    Article  CAS  PubMed  Google Scholar 

  15. Wu T, et al. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci Rep. 2016;6:20250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han C, et al. The effect of immunosuppressive drug cyclosporine A on myeloid-derived suppressor cells in transplanted mice. Inflamm Res. 2016;65(9):679–88.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, et al. Dexamethasone-induced myeloid-derived suppressor cells prolong allo cardiac graft survival through iNOS- and glucocorticoid receptor-dependent mechanism. Front Immunol. 2018;9:282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Marigo I, et al. Tumor-induced tolerance and immune suppression depend on the C/EBP beta transcription factor. Immunity. 2010;32(6):790–802.

    Article  CAS  PubMed  Google Scholar 

  19. Drujont L, et al. Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection. PLoS One. 2014;9:6.

    Article  CAS  Google Scholar 

  20. Highfill SL, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood. 2010;116(25):5738–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Messmann JJ, et al. In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood. 2015;126(9):1138–48.

    Article  CAS  PubMed  Google Scholar 

  22. Greifenberg V, et al. Myeloid-derived suppressor cell activation by combined LPS and IFN-γ treatment impairs DC development. Eur J Immunol. 2009;39(10):2865–76.

    Article  CAS  PubMed  Google Scholar 

  23. Obermajer N, et al. PGE2-induced CXCL12 production and CXCR7 expression controls the accumulation of human MDSCs in ovarian cancer environment. Can Res. 2011;71(24):7463–70.

    Article  CAS  Google Scholar 

  24. Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol. 2016;100(3):481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carretero-Iglesia L, et al. Comparative study of the immunoregulatory capacity of in vitro generated tolerogenic dendritic cells, suppressor macrophages, and myeloid-derived suppressor cells. Transplantation. 2016;100(10):2079–89.

    Article  CAS  PubMed  Google Scholar 

  26. Yang F, et al. TNFα-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J Mol Med. 2016;94:1–10.

    Article  Google Scholar 

  27. English K, et al. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett. 2007;110(2):91–100.

    Article  CAS  PubMed  Google Scholar 

  28. Hwu P, et al. Indoleamine 2, 3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000;164(7):3596–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8(7):533.

    Article  CAS  PubMed  Google Scholar 

  30. Munn DH, et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carretero-Iglesia L, Hill M, Cuturi MC. Generation and characterization of mouse regulatory macrophages. In: Cuturi CM, Anegon I, editors. Suppression and regulation of immune responses: methods and protocols, vol. II. New York: Springer; 2016. p. 89–100.

    Chapter  Google Scholar 

  32. Ferber IA, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol. 1996;156(1):5–7.

    CAS  PubMed  Google Scholar 

  33. Manoury-Schwartz B, et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol. 1997;158(11):5501–6.

    CAS  PubMed  Google Scholar 

  34. Vermeire K, et al. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol. 1997;158(11):5507–13.

    CAS  PubMed  Google Scholar 

  35. Refaeli Y, et al. Interferon γ is required for activation-induced death of T lymphocytes. J Exp Med. 2002;196(7):999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koch MA, et al. T-bet controls regulatory T cell homeostasis and function during type-1 inflammation. Nat Immunol. 2009;10(6):595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eljaafari A, Li Y-P, Miossec P. IFN-gamma, as secreted during an alloresponse, induces differentiation of monocytes into tolerogenic dendritic cells, resulting in FoxP3+regulatory T cell promotion. J Immunol. 2009;183(5):2932.

    Article  CAS  PubMed  Google Scholar 

  38. Bogdan C, Röllinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol. 2000;12(1):64–76.

    Article  CAS  PubMed  Google Scholar 

  39. Riquelme P, et al. IFN-gamma-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther. 2013;21(2):409–22.

    Article  CAS  PubMed  Google Scholar 

  40. Ravishankar B, et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc Natl Acad Sci USA. 2015;112(34):10774–9.

    Article  CAS  PubMed  Google Scholar 

  41. Delneste Y, et al. Interferon-γ switches monocyte differentiation from dendritic cells to macrophages. Blood. 2003;101(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  42. Jurgens B, et al. Interferon-gamma-triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood. 2009;114(15):3235–43.

    Article  PubMed  CAS  Google Scholar 

  43. Spranger S, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Abiko K, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer. 2015;112:1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang CJ, et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-γ. Stem Cells. 2006;24(11):2466–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciated Drs. Yuzhu Hou and Peng Wang for their critical reviewing our manuscript, and Mrs. Ling Li for her excellent laboratory management. This work was supported by Grants from the National Natural Science Foundation for General and Key Programs (81530049, U1738111, Y.Z.), the National Key Research and Development Program of China (2017YFA0105002, 2017YFA0104402, Y.Z.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030301, XDA16030300, Y.Z.), and The China Manned Space Flight Technology Project (TZ-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Yong Zhao.

Ethics declarations

Conflict of interest

The authors herein declare that all authors have no competing financial interests.

Additional information

Responsible Editor: Mauro Teixeira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Li, Y., Zou, W. et al. Adoptive transfer of IFN-γ-induced M-MDSCs promotes immune tolerance to allografts through iNOS pathway. Inflamm. Res. 68, 545–555 (2019). https://doi.org/10.1007/s00011-019-01237-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01237-9

Keywords

Navigation