Skip to main content
Log in

Peroxisome proliferator-activated receptor alpha mediates C/EBP homologous protein to protect mice from acute liver failure

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Peroxisome proliferator-activated receptor α (PPARα) activation has been reported to ameliorate liver injury in cases of acute liver failure (ALF). However, its intrinsic protective molecular mechanisms remain largely undetermined. C/EBP homologous protein (CHOP) is an important mediator of lipopolysaccharide (LPS)-induced inflammation. The aim of the present study was to test the hypothesis that PPARα activation alleviates liver inflammation to protect mice from acute liver failure (ALF) mediated by CHOP.

Methods

In a murine model induced by d-galactosamine (d-GalN, 700 mg/kg) and LPS (10 μg/kg), Wy-14643 (6 mg/kg) was administered to activate PPARα. The mice of different groups were killed 6 h after d-GalN/LPS injection, and the liver and blood were collected for analysis. To find out whether PPARα activation protects the liver from injury due to inflammation by regulating CHOP, we used expression plasmid to increase CHOP expression and demonstrated how PPARα mediated CHOP to regulate inflammation in vivo and in vitro.

Results

The expression of PPARα was downregulated and the expression of CHOP was upregulated with the development of d-GalN/LPS-induced liver injury. The protective molecular mechanisms of PPARα activation were dependent on the expression of CHOP. Indeed, (1) PPARα activation decreased the expression of CHOP; on the other hand, PPARα knockdown increased the expression of CHOP in vivo; (2) the depressed liver inflammation by PPARα activation was due to the downregulation of CHOP expression, because overexpression of CHOP by transfect plasmid reversed liver protection and increased liver inflammation again; (3) in vitro, PPARα inhibition by siRNA treatment increased the expression of proinflammatory cytokines, and CHOP siRNA co-transfection reversed the expression of proinflammatory cytokines.

Conclusions

Here, we demonstrated that PPARα activation contributes to liver protection and decreases liver inflammation in ALF, particularly through regulating CHOP. Our findings may provide a rationale for targeting PPARα as a potential therapeutic strategy to ameliorate ALF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALF:

Acute liver failure

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ATF6α:

Activating transcription factor 6α

BMDMs:

Murine bone marrow-derived macrophages

CHOP:

C/EBP homologous protein

CXCL-10:

Chemokine (C-X-C motif) ligand-10

d-GalN:

d-Galactosamine

ER:

Endoplasmic reticulum

H&E:

Hematoxylin and eosin

HPRT:

Hypoxanthine-guanine phosphoribosyltransferase

IL-6:

Interleutin-6

IRE1α:

Inositol-requiring kinase 1α

LPS:

Lipopolysaccharide

NF-κB:

Transcription factor nuclear factor-κB

NOD:

Nucleotide-binding oligomerization domain

PPARα:

Peroxisome proliferator-activated receptor-α

PERK:

Pancreatic ER eIF2α kinase

PVDF:

Polyvinylidene difluoride

qRT-PCR:

Quantitative reverse transcription-PCR

RIDD:

Regulated IRE1-dependent decay

RIG-1:

Retinoic acid-inducible gene 1

RIPA:

Radioimmunoprecipitation assay

STAT1:

Signal transducer and activator of transcription 1

TNF-α:

Tumor necrosis factor-α

UPR:

Unfolded protein responses

References

  1. Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J, Williams R. The systemic inflammatory response syndrome in acute liver failure. Hepatology. 2000;32(4 Pt 1):734–9.

    Article  CAS  PubMed  Google Scholar 

  2. Hoofnagle JH, Carithers RL Jr, Shapiro C, Ascher N. Fulminant hepatic failure: summary of a workshop. Hepatology. 1995;21(1):240–52.

    CAS  PubMed  Google Scholar 

  3. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20(5):649–88.

    CAS  PubMed  Google Scholar 

  4. Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  5. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93.

    Article  CAS  PubMed  Google Scholar 

  6. Roberts RA, Chevalier S, Hasmall SC, James NH, Cosulich SC, Macdonald N. PPAR alpha and the regulation of cell division and apoptosis. Toxicology. 2002;181–182:167–70.

    Article  PubMed  Google Scholar 

  7. Delayre-Orthez C, Becker J, Guenon I, Lagente V, Auwerx J, Frossard N, et al. PPARalpha downregulates airway inflammation induced by lipopolysaccharide in the mouse. Respir Res. 2005;6:91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Di Paola R, Esposito E, Mazzon E, Genovese T, Muia C, Crisafulli C, et al. Absence of peroxisome proliferators-activated receptors (PPAR)alpha enhanced the multiple organ failure induced by zymosan. Shock. 2006;26(5):477–84.

    PubMed  Google Scholar 

  9. Sheu MY, Fowler AJ, Kao J, Schmuth M, Schoonjans K, Auwerx J, et al. Topical peroxisome proliferator activated receptor-alpha activators reduce inflammation in irritant and allergic contact dermatitis models. J Invest Dermatol. 2002;118(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  10. Yoo SH, Abdelmegeed MA, Song BJ. Activation of PPAR alpha by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun. 2013;436(3):366–71.

    Article  CAS  PubMed  Google Scholar 

  11. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem. 1999;274(45):32048–54.

    Article  CAS  PubMed  Google Scholar 

  12. Lee JH, Joe EH, Jou I. PPAR-alpha activators suppress STAT1 inflammatory signaling in lipopolysaccharide-activated rat glia. NeuroReport. 2005;16(8):829–33.

    Article  CAS  PubMed  Google Scholar 

  13. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature. 1996;384(6604):39–43.

    Article  CAS  PubMed  Google Scholar 

  14. Standage SW, Caldwell CC, Zingarelli B, Wong HR. Reduced peroxisome proliferator-activated receptor alpha expression is associated with decreased survival and increased tissue bacterial load in sepsis. Shock. 2012;37(2):164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoo SH, Park O, Henderson LE, Abdelmegeed MA, Moon KH, Song BJ. Lack of PPARalpha exacerbates lipopolysaccharide-induced liver toxicity through STAT1 inflammatory signaling and increased oxidative/nitrosative stress. Toxicol Lett. 2011;202(1):23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiao M, Ren F, Zhou L, Zhang X, Zhang L, Wen T, et al. Peroxisome proliferator-activated receptor alpha activation attenuates the inflammatory response to protect the liver from acute failure by promoting the autophagy pathway. Cell Death Dis. 2014;5:e1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–33.

    Article  CAS  PubMed  Google Scholar 

  18. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article  CAS  PubMed  Google Scholar 

  19. Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Ren F, Cheng Q, Bai L, Shen X, Gao F, et al. Endoplasmic reticulum stress modulates liver inflammatory immune response in the pathogenesis of liver ischemia and reperfusion injury. Transplantation. 2012;94(3):211–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinon F, Chen X, Lee AH, Glimcher LH. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol. 2010;11(5):411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith JA, Turner MJ, DeLay ML, Klenk EI, Sowders DP, Colbert RA. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur J Immunol. 2008;38(5):1194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng L, Liu YP, Sha H, Chen H, Qi L, Smith JA. XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. J Immunol. 2010;185(4):2324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013–30.

    Article  CAS  PubMed  Google Scholar 

  26. Endo M, Oyadomari S, Suga M, Mori M, Gotoh T. The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice. J Biochem. 2005;138(4):501–7.

    Article  CAS  PubMed  Google Scholar 

  27. Endo M, Mori M, Akira S, Gotoh T. C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol. 2006;176(10):6245–53.

    Article  CAS  PubMed  Google Scholar 

  28. Esposito V, Grosjean F, Tan J, Huang L, Zhu L, Chen J, et al. CHOP deficiency results in elevated lipopolysaccharide-induced inflammation and kidney injury. Am J Physiol Renal Physiol. 2013;304(4):F440–50.

    Article  CAS  PubMed  Google Scholar 

  29. Cao SS, Luo KL, Shi L. Endoplasmic reticulum stress interacts with inflammation in human diseases. J Cell Physiol. 2016;231(2):288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Ren F, Zhang X, Wang X, Shi H, Zhou L, et al. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure. Dis Model Mech. 2016;9(7):799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–6.

    Article  CAS  PubMed  Google Scholar 

  33. Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chavez-Arroyo A, Tsai AY, et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 2016;532(7599):394–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lencer WI, DeLuca H, Grey MJ, Cho JA. Innate immunity at mucosal surfaces: the IRE1-RIDD-RIG-I pathway. Trends Immunol. 2015;36(7):401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren F, Zhou L, Zhang X, Wen T, Shi H, Xie B, et al. Endoplasmic reticulum stress-activated glycogen synthase kinase 3beta aggravates liver inflammation and hepatotoxicity in mice with acute liver failure. Inflammation. 2015;38(3):1151–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 81270532, 81372094 and 81473500), the Natural Science Foundation of Beijing Municipality (no. 7162085), Beijing Municipal Science & Technology Commission Applied Research for the Clinical Characteristics of Capital (no. Z161100000516113), the Wang Boen Liver Fibrosis Research Foundation of CFHPC (no. CFHPC20131031), and the High-level Technical Personnel Training Plan of the Beijing Health System (no. 2013-3-075).

Author information

Authors and Affiliations

Authors

Contributions

XL and FR conceived and designed the work. XZ and PD performed the experiments. HS and HS contributed reagents/materials/analysis tools. DC and ZD participated in the discussion of the study.

Corresponding author

Correspondence to Feng Ren.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dong, P., Shi, H. et al. Peroxisome proliferator-activated receptor alpha mediates C/EBP homologous protein to protect mice from acute liver failure. Inflamm. Res. 66, 813–822 (2017). https://doi.org/10.1007/s00011-017-1061-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1061-3

Keywords

Navigation