Skip to main content

Advertisement

Log in

Anti-inflammatory effects of kaempferol-3-O-sophoroside in human endothelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Kaempferol-3-O-sophoroside (KPOS) was isolated from the leaves of cultivated mountain ginseng. Kaempferol (KP) has antitumor, anti-oxidative, anti-allergic and antidiabetic activities but the barrier protective effects and underlying mechanism are not fully identified. In this study, we attempted to determine whether pretreatment with KPOS induced significant barrier protective activities in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs).

Methods

The anti-inflammatory activities of KPOS were determined by measuring solute flux, neutrophil adhesion and migration and activation of pro-inflammatory proteins in LPS-activated HUVECs.

Results

We found that KPOS inhibited LPS-induced barrier disruption, expression of cell adhesion molecules, neutrophil adhesion and transendothelial migration of neutrophils to HUVECs. Further studies revealed that KPOS suppressed the production of tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by LPS, and that anti-inflammatory activities of KPOS were better than those of KP.

Conclusion

Collectively, these results suggest that KPOS possesses barrier integrity activity, inhibitory activity on cell adhesion and migration to endothelial cells by blocking the activation of NF-κB expression and production of TNF-α, thereby endorsing its usefulness as therapy for vascular inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

KP:

Kaempferol

KPOS:

Kaempferol-3-O-sophoroside

LPS:

Lipopolysaccharide

CAM:

Cell adhesion molecule

VCAM:

Vascular cell adhesion molecule

ICAM:

Intracellular cell adhesion molecule

NF-κB:

Nuclear factor-κB

TNF:

Tumor necrosis factor

BDMC:

Bisdemethoxycurcumin

TEM:

Transendothelial migration

References

  1. Keller TT, Mairuhu AT, de Kruif MD, Klein SK, Gerdes VE, ten Cate H, et al. Infections and endothelial cells. Cardiovasc Res. 2003;60:40–8.

    Article  PubMed  CAS  Google Scholar 

  2. Javaid K, Rahman A, Anwar KN, Frey RS, Minshall RD, Malik AB. Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circ Res. 2003;92:1089–97.

    Article  PubMed  CAS  Google Scholar 

  3. Lockyer JM, Colladay JS, Alperin-Lea WL, Hammond T, Buda AJ. Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circ Res. 1998;82:314–20.

    PubMed  CAS  Google Scholar 

  4. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993;92:1866–74.

    Article  PubMed  CAS  Google Scholar 

  5. Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2004;24:2137–42.

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem. 2005;280:21763–72.

    Article  PubMed  CAS  Google Scholar 

  7. Stoll LL, Denning GM, Weintraub NL. Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm Des. 2006;12:4229–45.

    Article  PubMed  CAS  Google Scholar 

  8. Wung BS, Ni CW, Wang DL. ICAM-1 induction by TNF-alpha and IL-6 is mediated by distinct pathways via Rac in endothelial cells. J Biomed Sci. 2005;12:91–101.

    Article  PubMed  CAS  Google Scholar 

  9. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  PubMed  CAS  Google Scholar 

  10. Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev. 2003;83:1069–112.

    PubMed  CAS  Google Scholar 

  11. Bae JS, Yang L, Manithody C, Rezaie AR. Engineering a disulfide bond to stabilize the calcium-binding loop of activated protein C eliminates its anticoagulant but not its protective signaling properties. J Biol Chem. 2007;282:9251–9.

    Article  PubMed  CAS  Google Scholar 

  12. Spiecker M, Darius H, Liao JK. A functional role of I kappa B-epsilon in endothelial cell activation. J Immunol. 2000;164:3316–22.

    PubMed  CAS  Google Scholar 

  13. Takeda R, Suzuki E, Satonaka H, Oba S, Nishimatsu H, Omata M, et al. Blockade of endogenous cytokines mitigates neointimal formation in obese Zucker rats. Circulation. 2005;111:1398–406.

    Article  PubMed  CAS  Google Scholar 

  14. Olszewska M. Separation of quercetin, sexangularetin, kaempferol and isorhamnetin for simultaneous HPLC determination of flavonoid aglycones in inflorescences, leaves and fruits of three Sorbus species. J Pharm Biomed Anal. 2008;48:629–35.

    Article  PubMed  CAS  Google Scholar 

  15. Kowalski J, Samojedny A, Paul M, Pietsz G, Wilczok T. Effect of kaempferol on the production and gene expression of monocyte chemoattractant protein-1 in J774.2 macrophages. Pharmacol Rep. 2005;57:107–12.

    PubMed  CAS  Google Scholar 

  16. Garcia-Mediavilla V, Crespo I, Collado PS, Esteller A, Sanchez-Campos S, Tunon MJ, et al. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol. 2007;557:221–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu M, Chan KW, Ng LS, Chang Q, Chang S, Li RC. Possible influences of ginseng on the pharmacokinetics and pharmacodynamics of warfarin in rats. J Pharm Pharmacol. 1999;51:175–80.

    Article  PubMed  CAS  Google Scholar 

  18. Choo MK, Park EK, Han MJ, Kim DH. Antiallergic activity of ginseng and its ginsenosides. Planta Med. 2003;69:518–22.

    Article  PubMed  CAS  Google Scholar 

  19. Dey L, Zhang L, Yuan CS. Anti-diabetic and anti-obese effects of ginseng berry extract: comparison between intraperitoneal and oral administrations. Am J Chin Med. 2002;30:645–7.

    Article  PubMed  Google Scholar 

  20. Liu ZQ, Luo XY, Liu GZ, Chen YP, Wang ZC, Sun YX. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or pro-oxidative activity in free radical induced hemolysis of human erythrocytes. J Agric Food Chem. 2003;51:2555–8.

    Article  PubMed  CAS  Google Scholar 

  21. Schliemann W, Schneider B, Wray V, Schmidt J, Nimtz M, Porzel A, et al. Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule. Phytochemistry. 2006;67:191–201.

    Article  PubMed  CAS  Google Scholar 

  22. Bae JS, Kim YU, Park MK, Rezaie AR. Concentration dependent dual effect of thrombin in endothelial cells via Par-1 and Pi3 Kinase. J Cell Physiol. 2009;219:744–51.

    Article  PubMed  CAS  Google Scholar 

  23. Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost. 2008;100:101–9.

    PubMed  CAS  Google Scholar 

  24. Akeson AL, Woods CW. A fluorometric assay for the quantitation of cell adherence to endothelial cells. J Immunol Methods. 1993;163:181–5.

    Article  PubMed  CAS  Google Scholar 

  25. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276:7614–20.

    Article  PubMed  CAS  Google Scholar 

  26. Che W, Lerner-Marmarosh N, Huang Q, Osawa M, Ohta S, Yoshizumi M, et al. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res. 2002;90:1222–30.

    Article  PubMed  CAS  Google Scholar 

  27. Fisher M. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. Rev Neurol Dis. 2008;5(Suppl 1):S4–11.

    PubMed  Google Scholar 

  28. Ulbrich H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci. 2003;24:640–7.

    Article  PubMed  CAS  Google Scholar 

  29. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86:515–81.

    Article  PubMed  CAS  Google Scholar 

  30. De Nardin E. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Ann Periodontol. 2001;6:30–40.

    Article  PubMed  Google Scholar 

  31. Hopkins SJ. The pathophysiological role of cytokines. Leg Med (Tokyo). 2003;5(Suppl 1):S45–57.

    Article  CAS  Google Scholar 

  32. Lacasse C, Turcotte S, Gingras D, Stankova J, Rola-Pleszczynski M. Platelet-activating factor stimulates interleukin-6 production by human endothelial cells and synergizes with tumor necrosis factor for enhanced production of granulocyte-macrophage colony stimulating factor. Inflammation. 1997;21:145–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government [MEST] (No. 2011-003410, 2011-0026695, 2011-0030124).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Additional information

Responsible Editor: Liwu Li.

T. H. Kim, S.-K. Ku and I.-C. Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Ku, SK., Lee, IC. et al. Anti-inflammatory effects of kaempferol-3-O-sophoroside in human endothelial cells. Inflamm. Res. 61, 217–224 (2012). https://doi.org/10.1007/s00011-011-0403-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0403-9

Keywords

Navigation