Skip to main content
Log in

Polynomially linked additive functions—II

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We continue the study of additive functions \(f_k:R\rightarrow F \;(1\le k\le n)\) linked by an equation of the form \(\sum _{k=1}^n p_k(x)f_k(q_k(x))=0\), where the \(p_k\) and \(q_k\) are polynomials, R is an integral domain of characteristic 0, and F is the fraction field of R. A method is presented for solving all such equations. We also consider the special case \(\sum _{k=1}^n x^{m_k}f_k(x^{j_k})=0\) in which the \(p_k\) and \(q_k\) are monomials. In this case we show that if there is no duplication, i.e. if \((m_k,j_k)\ne (m_p,j_p)\) for \(k\ne p\), then each \(f_k\) is the sum of a linear function and a derivation of order at most \(n-1\). Furthermore, if this functional equation is not homogeneous then the maximal orders of the derivations are reduced in a specified way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.: Some unsolved problems in the theory of functional equations. Arch. Math. 15, 435–444 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boros, Z., Erdei, P.: A conditional equation for additive functions. Aequ. Math. 70, 309–313 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boros, Z., Fechner, W.: An alternative equation for polynomial functions. Aequ. Math. 89, 17–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ebanks, B.: Characterizing ring derivations of all orders via functional equations: results and open problems. Aequ. Math. 89, 685–718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ebanks, B.: Polynomially linked additive functions. Aequ. Math. 91, 317–330 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebanks, B.: Linked pairs of additive functions. Aequ. Math. (to appear). https://doi.org/10.1007/s00010-017-0514-7

  7. Ebanks, B., Ng, C.T.: Homogeneous tri-additive forms and derivations. Linear Algebra Appl. 435, 2731–2755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ebanks, B., Riedel, T., Sahoo, P.K.: On the order of a derivation. Aequ. Math. 90, 335–340 (2016)

    Article  MATH  Google Scholar 

  9. Halter-Koch, F.: Characterization of field homomorphisms and derivations by functional equations. Aequ. Math. 59, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Halter-Koch, F.: A characterization of derivations by functional equations. Math. Pannon. 11, 187–190 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Halter-Koch, F., Reich, L.: Charakterisierung von Derivationen höherer Ordnung mittels Funktionalgleichungen. Österreich. Akad. Wiss. Math.-Nat. Kl. Sitzungsber. II 207, 123–131 (1998)

    MATH  Google Scholar 

  12. Jurkat, W.B.: On Cauchy’s functional equation. Proc. Am. Math. Soc. 16, 683–686 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Pl, K., Kurepa, S.: Some relations between additive functions I. Aequ. Math. 4, 163–175 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pl, K., Kurepa, S.: Some relations between additive functions II. Aequ. Math. 6, 46–58 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurepa, S.: The Cauchy functional equation and scalar product in vector spaces. Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske 19, 23–36 (1964)

    MathSciNet  MATH  Google Scholar 

  16. Kurepa, S.: Remarks on the Cauchy functional equation. Publ. Inst. Math.(Beograd)(N.S.) 5(19), 85–88 (1965)

    MathSciNet  MATH  Google Scholar 

  17. Nishiyama, A., Horinouchi, S.: On a system of functional equations. Aequ. Math. 1, 1–5 (1968)

    Article  MATH  Google Scholar 

  18. Reich, L.: Derivationen zweiter Ordnung als Lösungen von Funktionalgleichungen. Grazer Math. Ber. 337, 45–65 (1998)

    MATH  Google Scholar 

  19. Unger, J., Reich, L.: Derivationen höherer Ordnung als Lösungen von Funktionalgleichungen. Grazer Math. Ber. 336, 1–83 (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Ebanks.

Additional information

This work is dedicated to the memories of my colleague and friend Prasanna K. “Ron” Sahoo, my stepson Edmund “Ted” France, and especially my mother Dorothy Griner Ebanks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebanks, B. Polynomially linked additive functions—II. Aequat. Math. 92, 581–597 (2018). https://doi.org/10.1007/s00010-017-0537-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-017-0537-0

Keywords

Mathematics Subject Classification

Navigation