Skip to main content
Log in

Approximation of the Rosenblatt Sheet

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we obtain an approximation theorem for the Rosenblatt sheet, using martingale differences. The proof involves the tightness and identification of finite dimensional distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abry P, Pipiras V (2006) Wavelet-based synthesis of the Rosenblatt process. Signal Process. 86:2326–2339

    Article  MATH  Google Scholar 

  2. Albin JMP (1998) On extremal theory for self similar processes. Ann. Probab. 26:743–793

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardina X, Jolis M, Tudor CA (2003) Weak convergence to the fractional Brownian sheet and other two-parameter Gaussian processes. Statist. Probab. Lett. 65:317–329

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardina X, Jolis M (2000) Weak convergence to the fractional Brownian sheet from the Poisson process in the plane. Bernoulli. 6:653–665

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardina X, Florit C (2005) Approximation in law to the d-parameter fractional Brownian sheet based on the functional invariance principle. Rev. Mat. Iberoam. 21:1037–1052

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardina X, Rovira C (2014) Approximations of a complex Brownian motion by processes constructed from a lévy process. Mediterr. J. Math. doi:10.1007/s00009-014-0472-4

    MATH  Google Scholar 

  7. Beran J, Feng Y, Ghosh S, Kulik R (2013) Long-Memory Processes: Probabilistic Properties and Statistical Methods. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  8. Biagini F, Hu Y, Øksendal B, Zhang T (2008) Stochastic calculus for fBm and applications. Springer-Verlag, London

    MATH  Google Scholar 

  9. Bickel P, Wichura M (1971) Convergence criteria for multiparamenter stochastic process and some applications. Ann. Math. Statist. 42:1656–1670

    Article  MathSciNet  MATH  Google Scholar 

  10. Cairoli R, Walsh J (1975) Stochastic integrals in the plane. Acta Math. 134:111–183

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen C, Sun L, Yan L (2012) An approximation to the Rosenblatt process using martingale differences. Statist. Probab. Lett. 82:748–757

    Article  MathSciNet  MATH  Google Scholar 

  12. Chronopoulou A, Tudor C, Viens F (2009) Variations and Hurst index estimation for a Rosenblatt process using longer filters. Electron. J. Stat. 3:1393–1435

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai H (2013) Convergence in Law to Operator Fractional Brownian Motions. J. Theor. Probab. 26:676–696

    Article  MathSciNet  MATH  Google Scholar 

  14. Dobrushin RL, Major P (1979) Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 50:27–52

    Article  MathSciNet  MATH  Google Scholar 

  15. Leonenko NN, Ahn VV (2001) Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence. J. Appl. Math. Stoch. Anal. 14:27–46

    Article  MathSciNet  MATH  Google Scholar 

  16. Li Y, Dai H (2011) Approximations of fractional Brownian motion. Bernoulli 17:1195–1216

    Article  MathSciNet  MATH  Google Scholar 

  17. Maejima M, Tudor CA (2012) Selfsimilar processes with stationary increments in the second Wiener chaos. Probab. Math. Statist. 32:167–186

    MathSciNet  MATH  Google Scholar 

  18. Maejima M, Tudor CA (2013) On the distribution of the Rosenblatt process. Statist. Probab. Lett. 83:1490–1495

    Article  MathSciNet  MATH  Google Scholar 

  19. Maejima M, Tudor CA (2007) Wiener integrals with respect to the Hermite process and a non central limit theorem. Stoch. Anal. Appl. 25:1043–1056

    Article  MathSciNet  MATH  Google Scholar 

  20. Morkvenas R (1984) Invariance principle for martingales on the plane. Liet. Mat. Rink. 24:127–132

    MathSciNet  MATH  Google Scholar 

  21. Y. Mishura, Stochastic calculus for fBms and related processes. Lect. Notes in Math. 1929 (2008)

  22. Neuhaus G (1971) On weak convergence of stochastic process with multidimensional time paramenter. Ann. Math. Statist. 42:1285–1295

    Article  MathSciNet  MATH  Google Scholar 

  23. Nieminen A (2004) Fractional Brownian motion and martingale-differences. Statist. Probab. Lett. 70:1–10

    Article  MathSciNet  MATH  Google Scholar 

  24. Nualart D (2006) Malliavin Calculus and Related Topics, 2nd edn. Springer-Verlag, Berlin

    MATH  Google Scholar 

  25. Pipiras V, Taqqu MS (2010) Regularization and integral representations of Hermite processes. Statist. Probab. Lett. 80:2014–2023

    Article  MathSciNet  MATH  Google Scholar 

  26. Sottinen T (2001) Fractional Brownian Motion, random walks and binary market models. Finance Stochast. 5:343–355

    Article  MathSciNet  MATH  Google Scholar 

  27. Taqqu M (1975) Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z. Wahrschein lichkeitstheor. Verwandte Geb. 31:287–302

    Article  MathSciNet  MATH  Google Scholar 

  28. Taqqu M (1979) Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50:53–83

    Article  MathSciNet  MATH  Google Scholar 

  29. Tudor C (2008) Analysis of the Rosenblatt process. ESAIM Probab. Stat. 12:230–257

    Article  MathSciNet  MATH  Google Scholar 

  30. Tudor C, Viens F (2009) Variations and estimators for the selfsimilarity order through Malliavin calculus. Ann. Probab. 37:2093–2134

    Article  MathSciNet  MATH  Google Scholar 

  31. Tudor C (2003) Weak convergence to the fractional Brownian sheet in Besov spaces. Bull. Braz. Math. Soc. 34:389–400

    Article  MathSciNet  MATH  Google Scholar 

  32. Tudor C (2013) Analysis of Variations for self-similar Processes. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Torres S, Tudor C (2009) Donsker type theorem for the Rosenblatt process and a binary market model. Stoch. Anal. Appl. 27:555–573

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang Z, Yan L, Yu X (2014) Weak approximation of the fractional Brownian sheet using martingale differences. Statist. Probab. Lett. 92:72–78

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Shen.

Additional information

This work was supported by the National Natural Science Foundation of China (11271020, 11171062).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Yin, X. & Yan, L. Approximation of the Rosenblatt Sheet. Mediterr. J. Math. 13, 2215–2227 (2016). https://doi.org/10.1007/s00009-015-0576-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0576-5

Mathematics Subject Classification

Keywords

Navigation