Skip to main content
Log in

Lyapunov Stability: A Geometric Algebra Approach

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Lyapunov stability theory for smooth nonlinear autonomous dynamical systems is presented in terms of Geometric Algebra. The system is described by a smooth nonlinear state vector differential equation, driven by a vector field in \(\mathbb {R}^n\). The level sets of the scalar Lyapunov function candidate are assumed to be compact smooth vector manifolds in \(\mathbb {R}^n\). The level sets induce an associated global foliation of the state space. On any leaf of this foliation, a geometric subalgebra is naturally attached to the corresponding tangent vector space of the smooth vector manifold. The pseudoscalar (field) of this subalgebra completely characterizes the tangent space. Asymptotic stability of the system equilibria is described in terms of equilibria of, easily computable, rejection vector fields with respect to the pseudoscalar field. Nonexistence of invariant sets of the Lyapunov function directional derivative, along the defining vector field, are also tested using a simple tangency condition. Several illustrative examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. The parameters used in the simulations presented are included in this article. Nevertheless, the current simulations are available from the authors on request.

References

  1. Ablamowicz, R., Baylis, W.E., Branson, T., Lounesto, P., Porteous, I., Ryan, J., Selig, J.M., Sobczyk, G.: Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston (2004). https://doi.org/10.1007/978-0-8176-8190-6

    Book  Google Scholar 

  2. Bayro-Corrochano, E.: Geometric Computing: for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer, London (2010). https://doi.org/10.1007/978-1-84882-929-9

    Book  MATH  Google Scholar 

  3. Bayro-Corrochano, E.: Geometric Algebra Vol I: Applications Computer Vision, Graphics and Neurocomputing. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74830-6

    Book  MATH  Google Scholar 

  4. Bayro-Corrochano, E.: Geometric Algebra Applications Vol. II Robot Modelling and Control. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34978-3

    Book  MATH  Google Scholar 

  5. Bellman, R.: Vector Lyapunov functions. J. Soc. Ind. Appl. Math. Ser. A Control 1(1), 32–34 (1962). https://doi.org/10.1137/0301003

    Article  MATH  Google Scholar 

  6. Candel, A., Conlon, L.: Foliations. I, Graduate Studies in Mathematics, vol. 23. American Mathematical Society, Providence (2000). https://doi.org/10.1090/gsm/023

    Book  MATH  Google Scholar 

  7. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511807497

    Book  MATH  Google Scholar 

  8. Dorst, L., Doran, C., Lasenby, J. (eds.): Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston (2002). https://doi.org/10.1007/978-1-4612-0089-5

    Book  MATH  Google Scholar 

  9. Hahn, W.: Stability of Motion. Springer, Berlin (1967). https://doi.org/10.1007/978-3-642-50085-5

    Book  MATH  Google Scholar 

  10. Hestenes, D.: New Foundations for Classical Mechanics, 2nd edn. Springer, Dordrecht (1999). https://doi.org/10.1007/0-306-47122-1

    Book  MATH  Google Scholar 

  11. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. A Unified Language for Mathematics and Physics. Kluwer Academic, Boston (1986). https://doi.org/10.1007/978-94-009-6292-7

    Book  MATH  Google Scholar 

  12. Joot, P.: Geometric Algebra for Electrical Engineers: Multivector Electromagnetism. CreateSpace Independent Publishing Platform, Scotts Valley (2019)

    Google Scholar 

  13. Kalman, R.E., Bertram, J.E.: Control system analysis and design via the “second method’’ of Lyapunov: I continuous-time systems. J. Basic Eng. Trans. ASME 82(2), 371–393 (1960). https://doi.org/10.1115/1.3662604

    Article  MathSciNet  Google Scholar 

  14. Kalman, R.E., Bertram, J.E.: Control system analysis and design via the “second method’’ of Lyapunov: II discrete-time systems. J. Basic Eng. Trans. ASME 82(2), 394–400 (1960). https://doi.org/10.1115/1.3662605

    Article  MathSciNet  Google Scholar 

  15. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  16. LaSalle, J., Lefschetz, S.: Stability by Liapunov’s Direct Method with Applications. Academic Press, Oxford (1961)

    MATH  Google Scholar 

  17. Lefschetz, S.: Stability of Nonlinear Control Systems. Academic Press, Oxford (1965)

    MATH  Google Scholar 

  18. Liapounoff, A.: Problème général de la stabilité du mouvement. In: Annales de la Faculté des sciences de Toulouse: Mathématiques, vol. 9, pp. 203–474 (1907)

  19. Macdonald, A.: Linear and Geometric Algebra. Createspace Independent Publishing Platform, Scotts Valley (2011)

    Google Scholar 

  20. Macdonald, A.: Vector and Geometric Calculus. Createspace Independent Publishing Platform, Scotts Valley (2012)

    Google Scholar 

  21. Merkin, D.R.: Introduction to the Theory of Stability, Texts in Applied Mathematics, vol. 14, 1st edn. Springer, New York (1997)

    Google Scholar 

  22. Perruquetti, W., Richard, J.P., Borne, P.: Vector Lyapunov functions: recent developments for stability, robustness, practical stability, and constrained control. Nonlinear Times Digest 2, 227–258 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The autors are grateful to Cinvestav-IPN for its continuous support of this research. B.C. Gómez-León and M.A. Aguilar-Orduña are supported by Conacty-México, via, respectively, scholarship contract numbers: 1039577 and 702805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Aguilar-Orduña.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by “Consejo Nacional de Ciencia y Tecnología” (CONACYT-México) and “Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional” (CINVESTAV-IPN)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sira-Ramírez, H., Gómez-León, B.C. & Aguilar-Orduña, M.A. Lyapunov Stability: A Geometric Algebra Approach. Adv. Appl. Clifford Algebras 32, 26 (2022). https://doi.org/10.1007/s00006-022-01210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-022-01210-6

Keywords

Mathematics Subject Classification

Navigation