Skip to main content
Log in

A Framework for Assumption-Free Assessment of Imperfect Geometry of a Linac C-Arms

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In the present paper a general setup for the determination of imperfect geometry of radiotherapeutic devices has been proposed that is based on a geometric algebra framework. To account for this imperfect geometry, two methods of a calibration were presented, consisting of determining for each angular position of a gantry a correction shift which must be applied to the origin of a laboratory frame of reference to place it along a radiation axis for this angular position. Closed form solutions for these corrections are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aragon-Camarasa, G., Aragon-Gonzalez, G., Aragon, J.L., Rodriguez-Andrade, M.A.: Clifford algebra with mathematica. In: Proceedings of the 29th International Conference on Applied Mathematics, Budapest (2015). arXiv:0810.2412 [math-ph]

  2. Chappel, J.M., Iqbal, A., Hartnett, J.G., Abbot, D.: The vector algebra war: a historical perspective. IEEE Access 4, 1997–2004 (2016)

    Article  Google Scholar 

  3. Cho, Y., Moseley, D.J., Siewerdsen, J.H., Jaffray, D.A.: Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Med. Phys. 32, 968–983 (2005)

    Article  Google Scholar 

  4. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Ford, J.C., Zheng, D., Williamson, J.F.: Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: implications for isocenter localization accuracy. Med. Phys. 38, 2829–2840 (2011)

    Article  Google Scholar 

  6. Gao, S., Du, W., Balter, P., Munro, P., Jeung, A.: Evaluation of IsoCal geometric calibration system for Varian linacs equipped with on-board imager and electronic portal imaging device imaging systems. J. Appl. Clin. Med. Phys. 12, 391–403 (2011)

    Article  Google Scholar 

  7. Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math. 23, 65–93 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hestenes, D., Ziegler, R.: Projective geometry with Clifford algebra. Acta Appl. Math. 23, 25–63 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klein, E.E., Hanley, J., Bayouth, J., Yin, F.-F., Simon, W., Dresser, S., Serago, C., Aguirre, F., Ma, L., Arjomandy, B., Liu, C., Sandin, C., Holmes, T.: Task Group 142 report: quality assurance of medical accelerators. Med. Phys. 36, 4197–4212 (2009)

    Article  Google Scholar 

  10. Kutcher, G.J., Coia, L., Gillin, M., Hanson, W.F., Leibel, S., Morton, R.J., Palta, J.R., Purdy, J.A., Reinstein, L.E., Svensson, G.K., Weller, M., Wingfield, L.: Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 21, 581–618 (1994)

    Article  Google Scholar 

  11. Mamalut-Hunter, M., Li, H., Low, D.A.: Linac mechanic QA using a cylindrical phantom. Phys. Med. Biol. 53, 5139–5149 (2008)

    Article  Google Scholar 

  12. Mao, W., Lee, L., Xing, L.: Development of a QA phantom and automated analysis tool for geometric quality assurance of on-board MV and kV X-ray imaging systems. Med. Phys. 35, 1497–1506 (2008)

    Article  Google Scholar 

  13. On-Board Imager (OBI).: On-Board Imager Advanced Imaging Maintenance Manual, version B502203R01D, chapter 11. Varian Medical Systems, Atlanta, pp. 178–205 (2012)

  14. Robert, N., Watt, K.N., Wang, X., Mainprize, J.G.: The geometric calibration of cone-beam systems with arbitrary geometry. Phys Med Biol. 54, 7239–7261 (2009)

    Article  Google Scholar 

  15. Rowshanfarzad, P., Sabat, M., O’Connor, D.J., Greek, P.B.: Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques. J. Appl. Clin. Med. Phys. 12, 3645–3653 (2011)

    Article  Google Scholar 

  16. Tabor, Z., Kabat, D., Tulik, M., Kycia, R., Latała, Z.: A generic multi-module phantom for testing geometry of a linac c-arm as a part of quality control in radiotherapy. Med. Phys. 44(10), 500–4989 (2017). https://doi.org/10.1002/mp.12451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kycia.

Additional information

Communicated by Rafał Abłamowicz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kycia, R.A., Tabor, Z., Woszczyna, A. et al. A Framework for Assumption-Free Assessment of Imperfect Geometry of a Linac C-Arms. Adv. Appl. Clifford Algebras 28, 54 (2018). https://doi.org/10.1007/s00006-018-0873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0873-8

Mathematics Subject Classification

Keywords

Navigation