Skip to main content
Log in

Leptons, Quarks, and Gauge from the Complex Clifford Algebra \(\mathbb {C}\ell _6\)

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

A simple geometric algebra is shown to contain automatically the leptons and quarks of a family of the Standard Model, and the electroweak and color gauge symmetries, without predicting extra particles and symmetries. The algebra is already naturally present in the Standard Model, in two instances of the Clifford algebra \(\mathbb {C}\ell _6\), one being algebraically generated by the Dirac algebra and the weak symmetry generators, and the other by a complex three-dimensional representation of the color symmetry, which generates a Witt decomposition which leads to the decomposition of the algebra into ideals representing leptons and quarks. The two instances being isomorphic, the minimal approach is to identify them, resulting in the model proposed here. The Dirac and Lorentz algebras appear naturally as subalgebras acting on the ideals representing leptons and quarks. The resulting representations on the ideals are invariant to the electromagnetic and color symmetries, which are generated by the bivectors of the algebra. The electroweak symmetry is also present, and it is already broken by the geometry of the algebra. The model predicts a bare Weinberg angle \(\theta _W\) given by \(\sin ^2\theta _W=0.25\). The model shares common ideas with previously known models, particularly with Chisholm and Farwell (Clifford (Geometric) algebras: with applications to physics, mathematics, and engineering. Birkhäuser Boston, Boston, pp 365–388, 1996), Trayling and Baylis (Clifford Algebras: applications to mathematics, physics, and engineering. Birkhäuser Boston, Boston, pp 547–558, 1996), and Furey (Standard Model Physics from an Algebra? Preprint arXiv:1611.09182, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, J., Huerta, J.: The algebra of grand unified theories. Am. Math. Soc. 47(3), 483–552 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barducci, A., Buccella, F., Casalbuoni, R., Lusanna, L., Sorace, E.: Quantized grassmann variables and unified theories. Phys. Lett. B 67(3), 344–346 (1977)

    Article  ADS  Google Scholar 

  3. Besprosvany, J.: Gauge and space-time symmetry unification. Int. J. Theor. Phys. 39(12), 2797–2836 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casalbuoni, R., Gatto, R.: Unified description of quarks and leptons. Phys. Lett. B 88(3–4), 306–310 (1979)

    Article  ADS  Google Scholar 

  5. Castro, C.: Clifford algebraic unification of conformal gravity with an extended Standard Model. Adv. Appl. Clifford Algebras 27(2), 1031–1042 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras (Collected works), vol. 2. Springer, Berlin, Heidelberg, New York (1997)

    MATH  Google Scholar 

  7. Chisholm, J.S.R., Farwell, R.S.: Properties of Clifford algebras for fundamental particles. In: Baylis, W.E. (ed.) Clifford (Geometric) Algebras: with Applications to Physics, Mathematics, and Engineering, pp. 365–388. Birkhäuser Boston, Boston (1996)

    Chapter  Google Scholar 

  8. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Springer, New York (1990)

    Book  MATH  Google Scholar 

  9. Daviau, C.: Retour à londe de Louis de Broglie. In: Ann. Fond. Louis Broglie, vol 40, p. 113 (2015)

  10. Daviau, C.: Gauge group of the standard model in \(C\ell _{1,5}\). Adv. Appl. Clifford Algebras 27(1), 279–290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daviau, C., Bertrand, J.: Electro-weak Gauge, Weinberg-Salam angle. J. Mod. Phys. 6(14), 2080 (2015)

    Article  Google Scholar 

  12. Daviau, C., Bertrand, J.: The Standard Model of Quantum Physics in Clifford Algebra. World Scientific, Singapore (2015)

    Book  MATH  Google Scholar 

  13. Derdzinski, A.: Geometry of the Standard Model of Elementary Particles. Springer, Berlin, Heidelberg (1992)

    Book  MATH  Google Scholar 

  14. Dixon, G.M.: Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics, vol. 290. Springer, US (2013)

    Google Scholar 

  15. Doran, C., Hestenes, D., Sommen, F., Van Acker, N.: Lie groups as spin groups. J. Math. Phys. 34(8), 3642–3669 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dubois-Violette, M.: Exceptional quantum geometry and particle physics. Nucl. Phys. B 912, 426–449 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Erler, J., Freitas, A.: Electroweak model and constraints on new physics, Revised November 2015. Particle Data Group, 2015. http://pdg.lbl.gov/2016/reviews/rpp2016-rev-standard-model.pdf

  18. Fritzsch, H., Minkowski, P.: Unified interactions of leptons and hadrons. Ann. Phys. 93(1–2), 193–266 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  19. Furey, Cohl: Charge quantization from a number operator. Phys. Lett. B 742, 195–199 (2015)

    Article  ADS  MATH  Google Scholar 

  20. Furey, C.: Standard Model Physics from an Algebra? Preprint arXiv:1611.09182, (2016)

  21. Georgi, H.: State of the art—gauge theories. In: AIP (Am. Inst. Phys.) Conf. Proc., no. 23, pp. 575–582. Harvard Univ., Cambridge, MA (1975)

  22. Georgi, H., Glashow, S.L.: Unity of all elementary-particle forces. Phys. Rev. Lett. 32(8), 438 (1974)

    Article  ADS  Google Scholar 

  23. Gualtieri, M.: Generalized complex geometry. Arxiv preprint math/0401221, (2004). arXiv:math/0401221

  24. Günaydin, M., Gürsey, F.: Quark statistics and octonions. Phys. Rev. D 9(12), 3387 (1974)

    Article  ADS  Google Scholar 

  25. McCabe, G.: The structure and interpretation of the standard model, vol. 2. Elsevier, Amsterdam (2011)

    Google Scholar 

  26. Mohr, P.J., Newe, D.B.: Physical constants, Revised 2015. Particle Data Group, (2016). http://pdg.lbl.gov/2016/reviews/rpp2016-rev-phys-constants.pdf

  27. Penrose, R., Rindler, W.: Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields (Cambridge Monographs on Mathematical Physics). Cambridge University Press, Cambridge (1987)

    Google Scholar 

  28. Stoica, O.C.: Singular General Relativity—Ph.D. Thesis. Minkowski Institute Press, (2013). arXiv:1301.2231 [math.DG]

  29. Stoica, O.C.: Metric dimensional reduction at singularities with implications to quantum gravity. Ann. Phys. 347(C), 74–91 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Todorov, I., Dubois-Violette, M.: Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra (2017)

  31. Trayling, G.: A geometric approach to the standard model. Preprint arXiv:hep-th/9912231 (1999)

  32. Trayling, G., Baylis, W.E.: A geometric basis for the standard-model gauge group. J. Phys. A Math. Theor. 34(15), 3309 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Trayling, G., Baylis, W.E.: The \(Cl_7\) approach to the Standard Model. In: Abłamowicz, Rafał (ed.) Clifford Algebras: Applications to Mathematics, Physics, and Engineering, pp. 547–558. Birkhäuser Boston, Boston (2004)

    Chapter  Google Scholar 

  34. Vargas, J.G.: \({\mathfrak{u}}(1)\times {\mathfrak{su}} (2)\) from the tangent bundle. In: J. Phys. Conf. Ser., volume 474, pp. 012032. IOP Publishing (2013)

  35. Wells, R.O.: Differential analysis on complex manifolds, vol. 65. Springer, New York (2007)

    Google Scholar 

  36. Wigner, E.P.: On unitary representations of the Inhomogeneous Lorentz Group. Ann. Math. 1(40), 149–204 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Żenczykowski, P.: Elementary Particles and Emergent Phase Space. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  38. Żenczykowski, P.: From Clifford algebra of nonrelativistic phase space to quarks and leptons of the standard model. Adv. Appl. Clifford Algebras 27(1), 333–344 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to thank C. Castro, C. Daviau, T. Dray, C. Furey, I. Kanatchikov, A. Laszlo, G. McClellan, I. Salom, I. Todorov, G. Trayling, and many others, for various suggestions and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Cristinel Stoica.

Additional information

This article is part of the Topical Collection on Proceedings ICCA 11, Ghent, 2017, edited by Hennie De Schepper, Fred Brackx, Joris van der Jeugt, Frank Sommen, and Hendrik De Bie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoica, O.C. Leptons, Quarks, and Gauge from the Complex Clifford Algebra \(\mathbb {C}\ell _6\). Adv. Appl. Clifford Algebras 28, 52 (2018). https://doi.org/10.1007/s00006-018-0869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0869-4

Mathematics Subject Classification

Keywords

Navigation