Skip to main content

Bivariate Normal Distribution

  • Chapter
  • First Online:
Continuous Bivariate Distributions

Abstract

In introductory statistics courses, one has to know why the (univariate) normal distribution is important—especially that the random variables that occur in many situations are approximately normally distributed and that it arises in theoretical work as an approximation to the distribution of many statistics, such as averages of independent random variables. More or less, the same reasons apply to the bivariate normal distribution. “But the prime stimulus has undoubtedly arisen from the strange tractability of the normal model: a facility of manipulation which is absent when we consider almost any other multivariate data-generating mechanism.”—Barnett (1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, S.K.: F-probability plot and its application to multivariate normality. Communications in Statistics: Theory and Methods 21, 997–1023 (1992)

    MATH  Google Scholar 

  2. Ahsanullah, M., Bansal, N., Hamedani, G.G., Zhang, H.: A note on bivariate normal distribution. Report, Rider University, Lawrenceville, New Jersey (1996)

    Google Scholar 

  3. Ahsanullah, M., Wesolowski, J.: Bivariate normality via Gaussian conditional structure. Report, Rider College, Lawrenceville, New Jersey (1992)

    Google Scholar 

  4. Albers, W., Kallenberg, W.C.M.: A simple approximation to the bivariate normal distribution with large correlation coefficient. Journal of Multivariate Analysis 49, 87–96 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Alexander, C., Scourse, A.: Bivariate normal mixture spread option valuation. Quantative Finance 4, 637–648 (2004)

    Google Scholar 

  6. Al-Hussaini, E.K., Abd-el-Hakim, N.S.: Bivariate inverse Gaussian distribution. Annals of the Institute of Statistical Mathematics 33, 57–66 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Al-Saleh, M.F., Al-Ananbeh, A.M.: Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable. Statistical Papers 48, 179–195 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Amos, D.E.: On computation of bivariate normal distribution. Mathematics of Computation 23, 655–659 (1969)

    MATH  MathSciNet  Google Scholar 

  9. Anderson, T.W.: An Introduction to Multivariate Analysis. John Wiley and Sons, New York (1958)

    Google Scholar 

  10. Anderson, T.W., Ghurye, S.G.: Unique factorization of products of bivariate normal cumulative distribution functions. Annals of the Institute of Statistical Mathematics 30, 63–70 (1978)

    MATH  MathSciNet  Google Scholar 

  11. Andrews, D.F., Gnanadesikan, R., Warner, J.L.: Transformations of multivariate data. Biometrics 27, 825–840 (1971)

    Google Scholar 

  12. Anscombe, F.J.: Computing in Statistical Science through APL. Springer-Verlag, New York (1981)

    Google Scholar 

  13. Arellano-Valle, R.B., Genton, M.G.: On fundamental skew distributions. Journal of Multivariate Analysis 96, 93–116 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Arnold, S.F.: Union–intersection principle. In: Encyclopedia of Statistical Sciences Volume 9, S. Kotz and N.L. Johnson (eds.), pp. 417–420. John Wiley and Sons, New York (1988)

    Google Scholar 

  15. Arnold, B.C., Beaver, R.J., Groenveld, R.A., Meeker, W.Q.: The nontruncated marginal of a truncated bivariate normal distribution. Psychometrika 58, 471–488 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Arnold, B.C., Castillo, E., Sarabia, J.M.: Conditional Specification of Statistical Models. Springer-Verlag, New York (1999)

    MATH  Google Scholar 

  17. Aroian, L.A.: The probability function of the product of two normally distributed variables. Annals of Mathematical Statistics 18, 265–271 (1947)

    MATH  MathSciNet  Google Scholar 

  18. Aroian, L.A.: Mathematical forms of the distribution of the product of two normal variables. Communications in Statistics: Theory and Methods 7, 165–172 (1978)

    MathSciNet  Google Scholar 

  19. Azzalini, A.: A class of distributions which includes normal ones. Scandinavian Journal of Statistics 12, 171–178 (1985)

    MATH  MathSciNet  Google Scholar 

  20. Azzalini, A.: The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics 32, 159–199 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Azzalini, A.: Skew-normal family of distributions. In: Encyclopedia of Statistical Sciences, Volume 12, S. Kotz, N. Balakrishnan, C.B. Read, and B. Vidakovic (eds.), pp. 7780–7785. John Wiley and Sons, New York (2006)

    Google Scholar 

  22. Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 715–726 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Bacon-Shone, J., Fung, W.K.: A new graphical method for detecting single and multiple outliers in univariate and multivariate data. Applied Statistics 36, 153–162 (1987)

    MathSciNet  Google Scholar 

  24. Balakrishnan, N.: Multivariate normal distribution and multivariate order statistics induced by ordering linear combinations. Statistics and Probability Letters 17, 343–350 (1993)

    MATH  MathSciNet  Google Scholar 

  25. Balakrishnan, N., Brito, M.R., Quiroz, A.J.: A vectorial notion of skewness and its use in testing for multivariate symmetry. Communications in Statistics: Theory and Methods 36, 1757–1767 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Balakrishnan, N., Kim, J.-A.: EM algorithm for Type-II right censored bivariate normal data. In: Parametric and Semiparametric Models with Applications to Reliability, Survival Analysis, and Quality of Life, M.S. Nikulin, N. Balakrishnan, M. Mesbah, and N. Limnios (eds.), pp. 177–210. Birkhäuser, Boston (2004)

    Google Scholar 

  27. Balakrishnan, N., Kim, J.-A.: Point and interval estimation for bivariate normal distribution based on progressively Type-II censored data. Communications in Statistics: Theory and Methods 34, 1297–1347 (2005a)

    MATH  MathSciNet  Google Scholar 

  28. Balakrishnan, N., Kim, J.-A.: EM algorithm and optimal censoring schemes for progressively Type-II censored bivariate normal data. In: Advances in Ranking and Selection, Multiple Comparisons and Reliability, N. Balakrishnan, N. Kannan, and H.N. Nagaraja (eds.), pp. 21-45. Birkhäuser, Boston (2005b)

    Google Scholar 

  29. Balakrishnan, N., Kim, J.-A.: Nonparametric tests for independence between lifetimes and covariates from censored bivariate normal samples. Communications in Statistics: Simulation and Computation 34, 685–710 (2005c)

    MATH  MathSciNet  Google Scholar 

  30. Balasubramanian, K., Balakrishnan, N.: On a class of multivariate distributions closed under concomitance of order statistics. Statistics and Probability Letters 23, 239–242 (1995)

    MATH  MathSciNet  Google Scholar 

  31. Banerjee, A.K.: A bivariate inverse Gaussian distribution (Preliminary report). (Abstract only.) Institute of Mathematical Statistics Bulletin 6, 138–139 (1977)

    Google Scholar 

  32. Baringhaus, L., Henze, N.: A consistent test for multivariate normality based on the empirical characteristic function. Metrika 35, 339–348 (1988)

    MATH  MathSciNet  Google Scholar 

  33. Barndorff-Nielsen, O.E., Blæsild, P., Seshadri, V.: Multivariate distributions with generalized inverse Gaussian marginals and associate Poisson mixture. Canadian Journal of Statistics 20, 109–120 (1991)

    Google Scholar 

  34. Barnett, V.: Some outlier tests for multivariate samples. South African Statistical Journal 13, 29–52 (1979)

    MATH  Google Scholar 

  35. Barnett, V.: Some bivariate uniform distributions. Communications in Statistics: Theory and Methods 9, 453–461 (Correction 10, 1457) (1980)

    Google Scholar 

  36. Barnett, V.: Reduced distance measures and transformation in processing multivariate outliers. Australian Journal of Statistics 25, 64–75 (1983a)

    Google Scholar 

  37. Barnett, V.: Principles and methods for handling outliers in data sets. In: Statistical Methods and the Improvement of Data Quality, T. Wright (ed.), pp. 131–166. Academic Press, New York (1983b)

    Google Scholar 

  38. Barnett, V.: Detection and testing of different types of outlier in linear structural relationships. Australian Journal of Statistics 27, 151–162 (1985)

    MathSciNet  Google Scholar 

  39. Barnett, V., Lewis, T.: Outliers in Statistical Data, 2nd edition. John Wiley and Sons, Chichester (1984)

    MATH  Google Scholar 

  40. Basford, K.E., McLachlan, G.J.: Likelihood estimation with normal mixture models. Applied Statistics 34, 282–289 (1985)

    MathSciNet  Google Scholar 

  41. Baughman, A.L.: A FORTRAN function for the bivariate normal integral. Computer Methods and Programs in Biomedicine 27, 169–174 (1988)

    Google Scholar 

  42. Bera, A., Jarque, C.: Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Economic Letters 7, 313–318 (1981)

    Google Scholar 

  43. Bera, A., John, S.: Tests for multivariate normality with Pearson alternatives. Communications in Statistics: Theory and Methods 12, 103–117 (1983)

    Google Scholar 

  44. Best, D.J., Rayner, J.C.W.: A test for bivariate normality. Statistics and Probability Letters 6, 407–412 (1988)

    MathSciNet  Google Scholar 

  45. Bhatt, N.M., Dave, P.H.: A note on the correlation between polynomial transformations of normal variates. Journal of the Indian Statistical Association 2, 177–181 (1964)

    MathSciNet  Google Scholar 

  46. Bhatt, N.M., Dave, P.H.: Change in normal correlation due to exponential transformations of standard normal variates. Journal of the Indian Statistical Association 3, 46–54 (1965)

    MathSciNet  Google Scholar 

  47. Bickel, P.J., Doksum, K.A.: Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, Oakland (1977)

    MATH  Google Scholar 

  48. Bildikar, S., Patil, G.P.: Multivariate exponential-type distributions. Annals of Mathematical Statistics 39, 1316–1326 (1968)

    MATH  MathSciNet  Google Scholar 

  49. Bjerager, P., Skov, K.: A simple formula approximating the normal distribution function. In: Euromech 155: Reliability Theory of Structural Engineering Systems, pp. 217–231. Danish Engineering Academy, Lyngby (1982)

    Google Scholar 

  50. Booker, J.M., Johnson, M.E., Beckman, R.J.: Investigation of an empirical probability measure based test for multivariate normality. In: American Statistical Association, 1984 Proceedings of the Statistical Computing Section, pp. 208–213. American Statistical Association, Alexandria, Virginia (1984)

    Google Scholar 

  51. Borth, D.M.: A modification of Owen’s method for computing the bivariate normal integral. Applied Statistics 22, 82–85 (1973)

    Google Scholar 

  52. Bouver, H., Bargmann, R.E.: Comparison of computational algorithms for the evaluation of the univariate and bivariate normal distribution. In: Proceedings of Computer Science and Statistics: 12th Annual Symposium on the Interface, J. F. Gentleman (ed.), pp. 344–348. (1979)

    Google Scholar 

  53. Bouver, H., Bargmann, R.E.: Evaluation and graphical application of probability contours for the bivariate normal distribution. In: American Statistical Association, 1981 Proceedings of the Statistical Computing Section, pp. 272–277. (1981)

    Google Scholar 

  54. Bowman, K.O., Shenton, L.R.: Moment (\(\sqrt {b_1} , b_{2}\)) techniques. In: Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.), pp. 279–329. Marcel Dekker, New York (1986)

    Google Scholar 

  55. Box, G.E.P., Cox, D.R.: An analysis of transformations. Journal of the Royal Statistical Society, Series B 26, 211–243 (Discussion, 244–252) (1964)

    MATH  MathSciNet  Google Scholar 

  56. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading, Massachusetts (1973)

    MATH  Google Scholar 

  57. Boys, R.: Algorithm AS R80: A remark on Algorithm AS 76: An integral useful in calculating noncentral t and bivariate normal probabilities. Applied Statistics 38, 580–582 (1989)

    Google Scholar 

  58. Brelsford, W.M., Relies, D.A.: STATLIB: A Statistical Computing Library. Prentice-Hall, Englewood Cliffs, New Jersey (1981)

    Google Scholar 

  59. Broffitt, J.D.: Zero correlation, independence, and normality. The American Statistician 40, 276–277 (1986)

    Google Scholar 

  60. Brucker, J.: A note on the bivariate normal distribution. Communications in Statistics: Theory and Methods 8, 175–177 (1979)

    MathSciNet  Google Scholar 

  61. Brunden, M.N.: The probability contours and a goodness-of-fit test for the singly truncated bivariate normal distribution. Communications in Statistics: Theory and Methods 7, 557–572 (1978)

    Google Scholar 

  62. Bucklew, J.A., Gallagher, N.C.: Quantization of bivariate circularly symmetric densities. In: Proceedings of the Sixteenth Annual Allerton Conference on Communication, Control, and Computing, pp. 982–990. Department of Electrical Engineering and Coordinated Science Laboratory, University of Illinois, Urbana-Champaign (1978)

    Google Scholar 

  63. Burmaster, D.E.: Lognormal distributions for total water intake and tap water intake by pregnant and lactating women in the United States. Risk Analysis 18, 215–219 (1998)

    Google Scholar 

  64. Burnaby, T.P.: Growth-invariant discriminant functions and generalised distances. Biometrics 22, 96–110 (1966)

    MATH  MathSciNet  Google Scholar 

  65. Cadwell, J.H.: The bivariate normal integral. Biometrika 38, 475–479 (1951)

    MATH  MathSciNet  Google Scholar 

  66. Cain, M.: The moment generating function of the minimum of bivariate normal random variables. The American Statistician 48, 124–125 (1994)

    MathSciNet  Google Scholar 

  67. Cain, M., Pan, E.: Moments of the minimum bivariate normal random variables. The Mathematical Scientist 20, 119–122 (1995)

    MATH  MathSciNet  Google Scholar 

  68. Castillo, E., Galambos, J.: Conditional distribution and bivariate normal distribution. Metrika 36, 209–214 (1989)

    MATH  MathSciNet  Google Scholar 

  69. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for Data Analysis. Wadsworth, Belmont, California (1983)

    MATH  Google Scholar 

  70. Chen, H., Chen, J.: Large sample distribution of the likelihood ratio test for normal mixtures. Statistics and Probability Letters 52, 125–133 (2001)

    MATH  MathSciNet  Google Scholar 

  71. Chen, H., Chen, J., Kalbfleisch, J.D. A modified likelihood ratio test for homogeneity in finite mixture models. Journal of the Royal Statistical Society, Series B 63, 19–29 (2001)

    MATH  MathSciNet  Google Scholar 

  72. Cheng, Y-S.: Bivariate lognormal distribution for characterizing asbestos fiber aerosols. Aerosol Science and Technology 5, 359–368 (1986)

    Google Scholar 

  73. Chernick, M.R.: Influence functions, outlier detection, and data editing. In: Statistical Methods and the Improvement of Data Quality, T. Wright (ed.), pp. 167–176. Academic Press, New York (1983)

    Google Scholar 

  74. Chou, K.C., Corotis, R.B.: Generalized wind speed probability distribution. Journal of Engineering Mechanics 109, 14–29 (1983)

    Google Scholar 

  75. Chou, Y-M.: Remark AS R55: A remark on Algorithm AS 76: An integral useful in calculating noncentral t and bivariate normal probabilities. Applied Statistics 34, 100–101 (1985)

    Google Scholar 

  76. Chou, Y-M., Owen, D.B.: An approximation to percentiles of a variable of the bivariate normal distribution when the other variable is truncated, with applications. Communications in Statistics: Theory and Methods 13, 2535–2547 (1984)

    MATH  MathSciNet  Google Scholar 

  77. Chuang, R-J., Mendell, N.R.: The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal covariance. Communications in Statistics: Simulation and Computation 26, 631–648 (1997)

    MATH  MathSciNet  Google Scholar 

  78. Clark, L.A., Denby, L., Pregibon, D., Harshfield, G.A., Pickering, T.G., Blank, S., Laragh, J.H.: A data-based method for bivariate outlier detection: Application to automatic blood pressure recording devices. Psychophysiology 24, 119–125 (1987)

    Google Scholar 

  79. Craig, C.C.: On the frequency function of xy. Annals of Mathematical Statistics 7, 1–15 (1936)

    Google Scholar 

  80. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton, New Jersey (1946)

    MATH  Google Scholar 

  81. Crofts, A.E.: An investigation of normal–lognormal distributions. Technical Report No. 32, Department of Statistics, Southern Methodist University, Dallas (1969)

    Google Scholar 

  82. Crofts, A.E., Owen, D.B.: Large sample maximum likelihood estimation in a normal-lognormal distribution. South African Statistical Journal 6, 1–10 (1972)

    MATH  MathSciNet  Google Scholar 

  83. Csörgö, S.: Testing by the empirical characteristic function: A survey. In: Asymptotic Statistics 2. Proceedings of the Third Prague Symposium on Asymptotic Statistics, P. Mandl and M. Hušková (eds.), pp. 45–56. Elsevier, Amsterdam (1984)

    Google Scholar 

  84. Csörgö, S.: Testing for normality in arbitrary dimension. Annals of Statistics 14, 708–723 (1986)

    MATH  MathSciNet  Google Scholar 

  85. Csörgö, S.: Consistency of some tests for multivariate normality. Metrika 36, 107–116 (1989)

    MATH  MathSciNet  Google Scholar 

  86. Cunnane, C.: Unbiased plotting positions: A review. Journal of Hydrology 37, 205–222 (1978)

    Google Scholar 

  87. D’Agostino, R.B.: Departures from normality, tests for. In: Encyclopedia of Statistical Sciences, Volume 2, S. Kotz and N.L. Johnson (eds.), pp. 315–324. John Wiley and Sons, New York (1982)

    Google Scholar 

  88. D’Agostino, R.B.: Graphical analysis. In: Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.) pp. 7–62. Marcel Dekker, New York (1986a)

    Google Scholar 

  89. D’Agostino, R.B.: Tests for the normal distribution. In: Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.) pp. 367–419. Marcel Dekker, New York (1986b)

    Google Scholar 

  90. D’Agostino, R.B., Belanger, A., D’Agostino, R.B., Jr.: A suggestion for using powerful and informative tests of normality. The American Statistician 44, 316–321 (1990)

    Google Scholar 

  91. D’Agostino, R., Pearson, E.S.: Tests for departure from normality, empirical results for the distributions of b 2 and \(\sqrt {b_1}\). Biometrika 60, 613–622 (1973)

    MATH  MathSciNet  Google Scholar 

  92. Daley, D.J.: Computation of bi- and trivariate normal integrals. Applied Statistics 23, 435–438 (1974)

    Google Scholar 

  93. David, H.A.: Order Statistics, 2nd edition. John Wiley and Sons, New York (1981)

    MATH  Google Scholar 

  94. David, H.A., Moeschberger, M.L.: The Theory of Competing Risks. Griffin, London (1978)

    MATH  Google Scholar 

  95. Davis, B.M., Jalkanen, G.J.: Nonparametric estimation of multivariate joint and conditional spatial distributions. Mathematical Geology 20, 367–381 (1988)

    Google Scholar 

  96. David, H.A., Nagaraja, H.N.: Concomitants of order statistics. In: Handbook of Statistics, Volume 16: Order Statistics: Theory and Methods. N. Balakrishnan and C.R. Rao (eds.), pp. 487–513. North-Holland, Amsterdam (1998)

    Google Scholar 

  97. D.J.DeBrota Dittus, R.S., Roberts, S.D., Wilson, J.R., Swain, J.J., Venkatraman, S.: Input modeling with the Johnson system of distributions. In: 1988 Winter Simulation Conference Proceedings, M.A. Abrams, P.L. Haigh, and J.C. Comfort (eds.), pp. 165–179. Institute of Electrical and Electronics Engineers, Piscataway, New Jersey (1988)

    Google Scholar 

  98. Devlin, S.J., Gnanadesikan, R., Kettenring, J.R.: Robust estimation and outlier detection with correlation coefficients. Biometrika 62, 531–545 (1975)

    MATH  Google Scholar 

  99. Der Kiureghian, A., Liu, P-L.: Structural reliability under incomplete probability information. Journal of Engineering Mechanics 112, 85–104 (1986)

    Google Scholar 

  100. DiDonato, A.R., Hageman, R.K.: A method for computing the integral of the bivariate normal distribution over an arbitrary polygon. SIAM Journal on Scientific and Statistical Computing 3, 434–446 (1982)

    MATH  MathSciNet  Google Scholar 

  101. Divgi, D.R.: Calculation of univariate and bivariate normal probability functions. Annals of Statistics 7, 903–910 (1979)

    MATH  MathSciNet  Google Scholar 

  102. Donnelly, T.G.: Algorithm 462: Bivariate normal distribution. Communications of the Association for Computing Machinery 16, 638 (1973)

    Google Scholar 

  103. Drezner, Z.: Computation of the bivariate normal integral. Mathematics of Computation 32, 277–279 (1978)

    MATH  MathSciNet  Google Scholar 

  104. Drezner, Z., Wesolowski, J.: On the computation of the bivariate normal integral. Journal of Statistical Computation and Simulation 35, 101–107 (1990)

    MathSciNet  Google Scholar 

  105. Evandt, O., Coleman, S., Ramalhoto, M.F., van Lottum, C.: A little-known robust estimator of the correlation coefficient and its use in a robust graphical test for bivariate normality with applications in aluminium industry. Quality and Reliability Engineering International 20, 433–456 (2004)

    Google Scholar 

  106. Everitt, B.S.: Mixture distributions. In: Encyclopedia of Statistical Sciences, Volume 5, S. Kotz and N.L. Johnson (eds.), pp. 559–569. John Wiley and Sons, New York (1985)

    Google Scholar 

  107. Everitt, B.S., Hand, D.J.: Finite Mixture Distributions. Chapman and Hall, London (1981)

    MATH  Google Scholar 

  108. Flury, B.K.: On sums of random variables and independence. The American Statistician 40, 214–215 (1986)

    MathSciNet  Google Scholar 

  109. Foulley, J.L., Gianola, D.: Estimation of genetic merit from bivariate “all or none” responses. Génétique, Sélection. Evolution 16, 285–306 (1984)

    Google Scholar 

  110. Fraser, D.A.S., Streit, F.: A further note on the bivariate normal distribution. Communications in Statistics: Theory and Methods 10, 1097–1099 (1980)

    MathSciNet  Google Scholar 

  111. Friedman, J.H., Stuetzle, W.: Projection pursuit methods for data analysis. In: Modern Data Analysis, R.L. Launer and A.F. Siegel (eds.), pp. 123–147. Academic Press, New York (1982)

    Google Scholar 

  112. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computing 23, 881–890 (1974)

    MATH  Google Scholar 

  113. Gajjar, A.V., Subrahmaniam, K.: On the sample correlation coefficient in the truncated bivariate normal population. Communications in Statistics: Simulation and Computation 7, 455–477 (1978)

    Google Scholar 

  114. Gayen, A.K.: The frequency distribution of the product-moment correlation coefficient in random samples of any size drawn from non-normal universes. Biometrika 38, 219–247 (1951)

    MATH  MathSciNet  Google Scholar 

  115. Ghosh, P., Branco, M.D., Chakraborty, H.: Bivariate random effect using skew-normal distribution with application to HIV-RNA. Statistics in Medicine 26, 1225–1267 (2007)

    MathSciNet  Google Scholar 

  116. Gideon, R.A., Gurland, J.: A polynomial type approximation for bivariate normal variates. SIAM Journal on Applied Mathematics 34, 681–684 (1978)

    MATH  MathSciNet  Google Scholar 

  117. Gnanadesikan, R.: Methods for Statistical Data Analysis of Multivariate Observations. John Wiley and Sons, New York (1977)

    MATH  Google Scholar 

  118. Goedhart, P.W., Jansen, M.J.W.: A remark on Algorithm AS 76: An integral useful in calculating noncentral t and bivariate normal probabilities. Applied Statistics 42, 496–497 (1992)

    Google Scholar 

  119. Goffinet, B., Loisel, P., Laurent, B.: Testing in normal mixture models when the proportions are known. Biometrika 79, 842–846 (1992)

    MATH  MathSciNet  Google Scholar 

  120. Grauslund, H., Lind, N.C.: A normal probability integral and some applications. Structural Safety 4, 31–40 (1986)

    Google Scholar 

  121. Green, P.J.: Peeling bivariate data. In: Interpreting Multivariate Data, V. Barnett (ed.), pp. 3–19. John Wiley & Sons, Chichester (1981)

    Google Scholar 

  122. Green, P.J.: Peeling data. In: Encyclopedia of Statistical Sciences, Volume 6, S. Kotz and N.L. Johnson (eds.), pp. 660–664. John Wiley and Son, New York (1985)

    Google Scholar 

  123. Green, P.J.: Sharpening data. In: Encyclopedia of Statistical Sciences, Volume 8, S. Kotz and N.L. Johnson (eds.), pp. 431–433, John Wiley and Sons, New York (1988)

    Google Scholar 

  124. Green, R.F.: Outlier-prone and outlier-resistant distributions. Journal of the American Statistical Association 71, 502–505 (1976)

    MATH  MathSciNet  Google Scholar 

  125. Groenewoud, C., Hoaglin, D.C., Vitalis, J.A.: Bivariate Normal Offset Circle Probability Tables with Offset Ellipse Transformations. Cornell Aeronautical Laboratory, Buffalo, New York (1967)

    Google Scholar 

  126. Gupta, P.L., Gupta, R.C.: Failure rate of the minimum and maximum of a multivariate normal distribution. Metrika 53, 39–49 (2001)

    MATH  MathSciNet  Google Scholar 

  127. Gupta, S.S.: Probability integrals of multivariate normal and multivariate t. Annals of Mathematical Statistics 34, 792–828 (1963a)

    MATH  MathSciNet  Google Scholar 

  128. Gupta, S.S.: Bibliography on the multivariate normal integrals and related topics. Annals of Mathematical Statistics 34, 829–838 (1963b)

    MATH  MathSciNet  Google Scholar 

  129. Gürler, G.: Bivariate estimation with right-truncated data. Journal of the American Statistical Association 91, 1152–1165 (1996)

    MATH  MathSciNet  Google Scholar 

  130. Hafley, W.L., Buford, M.A.: A bivariate model for growth and yield prediction. Forest Science 31, 237–247 (1985)

    Google Scholar 

  131. Häagglund, G., Larsson, R.: Estimation of the correlation coefficient based on selected data. Journal of Educational and Behavioral Statistics 31, 377–411 (2006)

    Google Scholar 

  132. Haldane, J.B.S.: Moments of the distribution of powers and products of normal variates. Biometrika 32, 226–242 (1942)

    MATH  MathSciNet  Google Scholar 

  133. Hamedani, G.G.: Bivariate and multivariate normal characterizations: A brief survey. Communications in Statistics: Theory and Methods 21, 2665–2688 (1992)

    MATH  MathSciNet  Google Scholar 

  134. Harter, H.L.: Another look at plotting positions. Communications in Statistics: Theory and Methods 13, 1613–1633 (1984)

    Google Scholar 

  135. Hawkins, D.M.: Identification of Outliers. Chapman and Hall, London (1980)

    MATH  Google Scholar 

  136. Hawkins, D.M.: A new test for multivariate normality and homoscedasticity. Technometrics 23, 105–110 (1981)

    MATH  MathSciNet  Google Scholar 

  137. Hazelton, M.L.: A graphical tool for assessing normality. The American Statistical Association 57), 285–288 (2003)

    MATH  MathSciNet  Google Scholar 

  138. He, Y., Pan, W., Lin, J.Z.: Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data. Computational Statistics and Data Analysis 51, 641–658 (2006)

    MATH  MathSciNet  Google Scholar 

  139. Henze, N.: On Mardia’s kurtosis test for multivariate normality. Communications in Statistics: Theory and Methods 23, 1031–1045 (1994)

    MATH  MathSciNet  Google Scholar 

  140. Henze, N.: Limit laws for multivariate skewness in the sense of Móori, Rohatgi and Székely. Statistics and Probability Letters 33, 299–307 (1997a)

    MATH  MathSciNet  Google Scholar 

  141. Henze, N.: Extreme smoothing and testing for multivariate normality. Statistics and Probability Letters 35, 203–213 (1997b)

    MATH  MathSciNet  Google Scholar 

  142. Henze, N.: Invariant tests for multivariate normality: A critical review. Statistics Papers 43, 476–506 (2002)

    MathSciNet  Google Scholar 

  143. Henze, N., Zirkler, B.: A class of invariant and consistent tests for multivariate normality. Communications in Statistics: Theory and Methods 19, 3595–3617 (1990)

    MATH  MathSciNet  Google Scholar 

  144. Heyde, C.C.: Multidimensional central limit theorems. In: Encyclopedia of Statistical Sciences, Volume 5, S. Kotz and N.L. Johnson (eds.), pp. 643–646. John Wiley and Sons, New York (1985)

    Google Scholar 

  145. Hiemstra, L.A.V., Creese, R.C.: Synthetic generation of seasonal precipitation. Journal of Hydrology 11, 30–46 (1970)

    Google Scholar 

  146. Hill, I.D.: Remark AS R26: A remark on Algorithm AS 76: An integral useful in calculating noncentral t and bivariate normal probabilities. Applied Statistics 27, 239 (1978)

    Google Scholar 

  147. Hinkley, D.V.: On the ratio of two correlated normal random variables. Biometrika 56, 635–639 (Correction 57, 683) (1969)

    MATH  MathSciNet  Google Scholar 

  148. Holland, P.W., Wang, Y.J.: Dependence function for continuous bivariate densities. Communications in Statistics: Theory and Methods 16, 863–876 (1987)

    MATH  MathSciNet  Google Scholar 

  149. Holst, E., Schneider, T.: Fibre size characterization and size analysis using general and bivariate log-normal distributions. Journal of Aerosol Science 16, 407–413 (1985)

    Google Scholar 

  150. Howarth, R.J., Earle, S.A.M.: Application of a generalized power transformation to geochemical data. Mathematical Geology 11, 45–62 (1979)

    Google Scholar 

  151. Y-T.Huang Wei, P-F.: A remark on the Zhang Omnibus test for normality. Journal of Applied Statistics 34, 177–184 (2007)

    MathSciNet  Google Scholar 

  152. Hutchinson, T.P., Lai, C.D.: Continuous Bivariate Distributions, Emphasising Applications. Rumsby Scientific Publishing, Adelaide (1991)

    Google Scholar 

  153. Iliopoulos, G.: Decision theoretic estimation of the ratio of variances in a bivariate normal distribution. Annals of the Institute of Statistical Mathematics 53, 436–446 (2001)

    MATH  MathSciNet  Google Scholar 

  154. Isogai, T.: Monte Carlo study on some measures for evaluating multinormality. Reports of Statistical Application Research, Union of Japanese Scientists and Engineers 30, 1–10 (1983a)

    Google Scholar 

  155. Isogai, T.: On measures of multivariate skewness and kurtosis. Mathematica Japonica 28, 251–261 (1983b)

    MATH  MathSciNet  Google Scholar 

  156. Iyengar, S.: Hitting lines with two-dimensional Brownian motion. SIAM Journal on Applied Mathematics 45, 983–989 (1985)

    MATH  MathSciNet  Google Scholar 

  157. Iyengar, S., Patwardhan, G.: Recent developments in the inverse Gaussian distribution. In: Handbook of Statistics, Volume 7, Quality Control and Reliability, P. R. Krishnaiah and C. R. Rao (eds.), pp. 479–490. North-Holland, Amsterdam (1988)

    Google Scholar 

  158. Japanese Standards Association: Statistical Tables and Formulas with Computer Applications. Japanese Standards Association, Tokyo (1972)

    Google Scholar 

  159. Jarque, C., Bera, A.: Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters 6, 255–259 (1980)

    MathSciNet  Google Scholar 

  160. Jarque, C., Bera, A.: A test for normality of observations and regression residuals. International Statistical Reviews 55, 163–172 (1987)

    MATH  MathSciNet  Google Scholar 

  161. Johnson, M.E.: Multivariate Statistical Simulation. John Wiley and Sons, New York (1987)

    MATH  Google Scholar 

  162. Johnson, M.E., Bryson, M.C., Mills, C.F.: Some new multivariate distributions with enhanced comparisons via contour and three-dimensional plots. Report LA-8903-MS, Los Alamos Scientific Laboratory, Lost Almamos, New Mexico (1981)

    Google Scholar 

  163. Johnson, M.E., Wang, C., Ramberg, J.: Generation of continuous multivariate distributions for statistical applications. American Journal of Mathematical and Management Sciences 4, 225–248 (1984)

    MATH  Google Scholar 

  164. Johnson, N.L.: Bivariate distributions based on simple translation systems. Biometrika 36, 297–304 (1949)

    MathSciNet  Google Scholar 

  165. Johnson, N.L., Kotz, S.: Distributions in Statistics: Continuous Multivariate Distributions. John Wiley and Sons, New York (1972)

    MATH  Google Scholar 

  166. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Volume 2, 2nd edition. John Wiley and Sons, New York (1995)

    MATH  Google Scholar 

  167. Jones, M.C.: “A graphical tool for assessing normality” by M.L. Hazelton, The American Statistician 57, 285–288 (2003). Comment by Jones. The American Statistician 58, 176–177 (2004)

    Google Scholar 

  168. Jones, M.C., Daly, F.: Density probability plots. Communications in Statistics: Simulation and Computation 24, 911–927 (1995)

    MATH  Google Scholar 

  169. Kagan, A., Wesolowski, J.: Normality via conditional normality of linear forms. Statistics and Probability Letters 29, 229–232 (1996)

    MATH  MathSciNet  Google Scholar 

  170. Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, Vol. 1: Distribution Theory, 4th edition. Griffin, London (1977)

    MATH  Google Scholar 

  171. Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, Vol. 2: Inference and Relationship, 4th edition. Griffin, London (1979)

    Google Scholar 

  172. Khatri, C.G., Rao, C.R.: Characterizations of multivariate normality, I: Through independence of some statistics. Journal of Multivariate Analysis 6, 81–94 (1976)

    MATH  MathSciNet  Google Scholar 

  173. J-A.,Kim Balakrishnan, N.: Nonparametric tests for independence between lifetimes and covariates from censored bivariate normal samples. Communications in Statistics: Simulation and Computation 34, 685–710 (2005)

    MATH  MathSciNet  Google Scholar 

  174. Kmietowicz, Z.W.: The bivariate lognormal model for the distribution of household size and income. The Manchester School of Economic and Social Studies 52, 196–210 (1984)

    Google Scholar 

  175. Kocherlakota, K., Kocherlakota, S., Balakrishnan, N.: Random number generation from a bivariate Edgeworth series distribution. Computational Statistics Quarterly 2, 97–105 (1986)

    Google Scholar 

  176. Kocherlakota, S.: The bivariate inverse Gaussian distribution: An introduction. Communications in Statistics: Theory and Methods 15, 1081–1112 (1986)

    MATH  MathSciNet  Google Scholar 

  177. Kocherlakota, S., Kocherlakota, K., Balakrishnan, N.: Effects of nonnormality on the SPRT for the correlation coefficient: Bivariate Edgeworth series distribution. Journal of Statistical Computation and Simulation 23, 41–51 (1985)

    MATH  Google Scholar 

  178. Kovner, J.L., Patil, S.A.: On the moments of the doubly truncated bivariate normal population with application to ratio estimate. Journal of the Indian Society of Agricultural Statistics 25, 131–140 (1973)

    Google Scholar 

  179. Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions, Volume 1, 2nd edition. John Wiley and Sons, New York (2000)

    MATH  Google Scholar 

  180. Kowalski, C.J.: The performance of some rough tests for bivariate normality before and after coordinate transformations to normality. Technometrics 12, 517–544 (1970)

    MATH  MathSciNet  Google Scholar 

  181. Kowalski, C.J.: Non-normal bivariate distributions with normal marginals. The American Statistician 27, 103–106 (1973)

    Google Scholar 

  182. Koziol, J.A.: A class of invariant procedures for assessing multivariate normality. Biometrika 69, 423–427 (1982)

    MATH  MathSciNet  Google Scholar 

  183. Koziol, J.A.: Assessing multivariate normality: A compendium. Communications in Statistics: Theory and Methods 15, 2763–2783 (1986)

    MATH  MathSciNet  Google Scholar 

  184. Koziol, J.A.: An alternative formulation of Neyman’s smooth goodness-of-fit tests under composite alternative. Metrika 34, 17–24 (1987)

    MATH  MathSciNet  Google Scholar 

  185. Lai, C.D., Rayner, J.C.W., Hutchinson, T.P.: Robustness of the sample correlation-The bivariate lognormal case. Journal of Applied Mathematics and Decision Sciences 3, 7–19 (1999)

    MATH  Google Scholar 

  186. Lancaster, H.O.: Zero correlation and independence. Australian Journal of Statistics 21, 53–56 (1959)

    MathSciNet  Google Scholar 

  187. Lancaster, H.O.: The Chi-Squared Distribution, John Wiley and Sons, New York (1969)

    MATH  Google Scholar 

  188. Lancaster, H.O.: Development of notion of statistical dependence. Mathematical Chronicle 2, 1–16 (1972)

    MathSciNet  Google Scholar 

  189. Li, L., Owen, D.B.: Two-sided screening procedures in the bivariate case. Technometrics 21, 79–85 (1979)

    Google Scholar 

  190. Li, Zh.V., Shevlyakov, G.L., Shin, V.I.: Robust estimation of a correlation coefficient for epsilon-contaminated bivariate normal distributions. Automation and Remote Control 67, 1940–1957 (2006)

    MATH  MathSciNet  Google Scholar 

  191. Liem, T.C.: A computer program for Box–Cox transformations in regression models with heteroscedastic and autoregressive residuals. The American Statistician 34, 121 (1980)

    Google Scholar 

  192. Lien, D.H.D.: Moments of truncated bivariate log-normal distributions. Economics Letters 19, 243–247 (1985)

    MathSciNet  Google Scholar 

  193. Lien, D., Balakrishnan, N.: Conditional analysis of order statistics from a bivariate normal distribution with an application to evaluating inventory effects in future market. Statistics and Probability Letters 63, 249–257 (2003)

    MATH  MathSciNet  Google Scholar 

  194. Lien, D., Balakrishnan, N.: Moments and properties of multiplicatively constrained bivariate lognormal distribution with applications to futures hedging. Journal of Statistical Planning and Inference 136, 1349–1359 (2006)

    MATH  MathSciNet  Google Scholar 

  195. Lin, C.C., Mudholkar, G.S.: A simple test of normality against asymmetric alternatives. Biometrika 67, 455–461 (1980)

    MATH  MathSciNet  Google Scholar 

  196. Lin, J-T.: A simple approximation for bivariate normal integral. Probability in the Engineering and Information Sciences 9, 317–321 (1995)

    Google Scholar 

  197. Linder, R.S., Nagaraja, H.N.: Impact of censoring on sample variances in a bivariate normal model. Journal of Statistical Planning and Inference 114, 145–160 (2003)

    MATH  MathSciNet  Google Scholar 

  198. Lindsay, B.G.: Mixture Models: Theory, Geometry and Applications. IMS, Hayward, California (1995)

    MATH  Google Scholar 

  199. Lindsay, B.G., Basak, P.: Multivariate normal mixtures: A fast consistent method of moments. Journal of the American Statistical Association 88, 468–476 (1993)

    MATH  MathSciNet  Google Scholar 

  200. Lindqvist, L.: SELLO, a FORTRAN IV program for the transformation of skewed distributions to normality. Computers and Geosciences 1, 129–145 (1976)

    Google Scholar 

  201. Looney, S.W.: A review of techniques for assessing multivariate normality. In: American Statistical Association, 1986 Proceedings of the Statistical Computing Section, pp. 280–285. American Statistical Association, Alexandria, Virginia (1986)

    Google Scholar 

  202. Looney, S.W.: How to use tests for univariate normality to assess multivariate normality. Journal of Statistical Theory and Practice 49, 64–70 (1995)

    Google Scholar 

  203. Madsen, R.W.: A selection procedure using a screening variate. Technometrics 24, 301–306 (1982)

    MATH  Google Scholar 

  204. Malkovich, J.F., Afifi, A.A.: On tests for multivariate normality. Journal of the American Statistical Association 68, 176–179 (1973)

    Google Scholar 

  205. Mardia, K.V.: Families of Bivariate Distributions. Griffin, London (1970a)

    MATH  Google Scholar 

  206. Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970b)

    MATH  MathSciNet  Google Scholar 

  207. Mardia, K.V.: Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies. Sankhyā, Series B 36, 115–128 (1974)

    MATH  MathSciNet  Google Scholar 

  208. Mardia, K.V.: Tests of univariate and multivariate normality. In: Handbook of Statistics, Volume 1, Analysis of Variance, P.R. Krishnaiah (ed.), pp. 279–320. North-Holland, Amsterdam (1980)

    Google Scholar 

  209. Mardia, K.V.: Mardia’s test of multinormality. In: Encyclopedia of Statistical Sciences, Volume 5, S. Kotz and N.L. Johnson (eds.), pp. 217–221. John Wiley and Sons, New York (1985)

    Google Scholar 

  210. Mardia, K.V., Foster, K.: Omnibus tests for multinormality based on skewness and kurtosis. Communications in Statistics: Theory and Methods 12, 207–221 (1983)

    MathSciNet  Google Scholar 

  211. Mardia, K.V., Zemroch, P.J.: Algorithm AS 84: Measures, of multivariate skewness and kurtosis. Applied Statistics 24, 262–265 (1975)

    Google Scholar 

  212. Marshall, A.W., Olkin, I.: A multivariate exponential distribution. Journal of the American Statistical Association 62, 30–44 (1967)

    MATH  MathSciNet  Google Scholar 

  213. Martynov, G.V.: Evaluation of the normal distribution function. Journal of Soviet Mathematics 17, 1857–1875 (1981)

    MATH  MathSciNet  Google Scholar 

  214. Mason, R.L., Young, J.C.: Re-examining two tests for bivariate normality. Communications in Statistics: Theory and Methods 14, 1531–1546 (1985)

    Google Scholar 

  215. Mathai, A.M., Pederzoli, G.: Characterizations of the Normal Probability Law. John Wiley & Sons, New York (1977)

    MATH  Google Scholar 

  216. Mathar, R.: Outlier-prone and outlier-resistant multidimensional distributions. Statistics 16, 451–456 (1985)

    MATH  MathSciNet  Google Scholar 

  217. McDonald, J.E.: Remarks on correlation methods in geophysics. Tellus 12, 176–183 (1960)

    Google Scholar 

  218. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  219. McLachlan, G.J., Bean, R.W., Ben-Tovim Jones, L., Zhu, X.: Using mixture models to detect differentially expressed genes. Australian Journal of Experimental Agriculture 45, 859–866 (2005)

    Google Scholar 

  220. McLaren C.E., Gordeuk, V.R., Chen, W.P., Barton, J.C., Action, R.T., Speechley, M., Castro, O., Adams, P.C., Sniveley, B.M., Harris, E.L., Reboussin, D.M., McLachlan, G.J., Bean, R.: Bivariate mixture modeling of transferrin saturation and serum ferritin concentration in Asians, African Americans, Hispanics, and whites in the hemochromatosis and iron overload screening (HEIRS). Translational Research 151, 97–109 (2008)

    Google Scholar 

  221. Mee, R.W., Owen, D.B.: A simple approximation for bivariate normal probabilities. Journal of Quality Technology 15, 72–75 (1983)

    Google Scholar 

  222. Mielke, P.W., Williams, J.S., Wu, S-C.: Covariance analysis technique based on bivariate log-normal distribution with weather modification applications. Journal of Applied Meteorology 16, 183–187 (1977)

    Google Scholar 

  223. Melnick, E.L. Tenenbein, A.: Misspecifications of the normal distribution. The American Statistician 36, 372–373 (1982)

    Google Scholar 

  224. Michael, J.R., Schucany, W.R.: Analysis of data from censored samples. In: Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.), pp. 461–496, Marcel Dekker, New York (1986)

    Google Scholar 

  225. Minami, M.: A multivariate extension of inverse Gaussian distribution derived from inverse relationship. Communications in Statistics: Theory and Methods 32, 2285–2304 (2003)

    MATH  MathSciNet  Google Scholar 

  226. Mingoti, S.A., Neves, Q.F.: A note on the Zhang omnibus test for normality based on the Q statistic. Journal of Applied Statistics 30, 335–341 (2003)

    MATH  MathSciNet  Google Scholar 

  227. Moore, D.S.: Tests of chi-squared type. In: Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.), pp. 63–95. Marcel Dekker, New York (1986)

    Google Scholar 

  228. Moran, P.A.P.: Testing for correlation between non-negative variates. Biometrika 54, 385–394 (1967)

    MATH  MathSciNet  Google Scholar 

  229. Móri, T.F., Rohatgi, V.K., Szrkely, G.J.: On multivariate skewness and kurtosis. Theory of Probability and Its Applications 38, 547–551 (1993)

    MathSciNet  Google Scholar 

  230. Mudholkar, G.S., McDermott, M., Srivastava, D.K.: A test of p-variate normality. Biometrika 79, 850–854 (1992)

    MATH  MathSciNet  Google Scholar 

  231. Mudholkar, G.S., Srivastava, D.K., Lin, C.T.: Some p-variate adaptions of the Shapiro–Wilk test of normality. Communications in Statistics: Theory and Methods 24, 953–985 (1995)

    MATH  MathSciNet  Google Scholar 

  232. Mukherjea, A., Nakassis, A., Miyashita, J.: Identification of parameters by the distribution of the maximum random variable: The Anderson-Ghurye theorems. Journal of Multivariate Analysis 18, 178–186 (1986)

    MATH  MathSciNet  Google Scholar 

  233. Mullooly, J.P.: The variance of left-truncated continuous nonnegative distributions. The American Statistician 42, 208–210 (1988)

    MathSciNet  Google Scholar 

  234. Mustonen, S.: Digression analysis. In: Encyclopedia of Statistical Sciences, Volume 2, S. Kotz and N.L. Johnson (eds.), pp. 373–374. John Wiley and Sons, New York (1982)

    Google Scholar 

  235. Nabeya, S.: Absolute moments in 2-dimensional normal distribution. Annals of the Institute of Statistical Mathematics 3, 2–6 (1951)

    MATH  MathSciNet  Google Scholar 

  236. Nagar, D.K., Castañeda, M.E.: Distribution of correlation coefficient under mixture normal model. Metrika 55, 183–190 (2002)

    MathSciNet  Google Scholar 

  237. Nagaraja, H.N.: A note on linear function of ordered correlated normal random variables. Biometrika 69, 284–285 (1982)

    Google Scholar 

  238. Nagaraja, H.N., David, H.A.: Distribution of the maximum of concomitants of selected order statistics. Annals of Statistics 22, 478–494 (1994)

    MATH  MathSciNet  Google Scholar 

  239. Naito, K.: On weighting the studentized empirical characteristic function for testing normality. Communications in Statistics: Simulation and Computation 25, 201–213 (1996)

    MATH  MathSciNet  Google Scholar 

  240. Nath, G.B.: Moments of a linearly truncated bivariate normal distribution. Australian Journal of Statistics 14, 97–102 (1972)

    MATH  MathSciNet  Google Scholar 

  241. National Bureau of Standards Tables of the Bivariate Normal Distribution Function and Related Functions, Applied Mathematics Series, No. 50. U.S. Government Printing Office, Washington, D.C. (1959)

    Google Scholar 

  242. Nicholson, C.: The probability integral for two variables. Biometrika 33, 59–72 (1943)

    MATH  MathSciNet  Google Scholar 

  243. Odeh, R.E., Owen, D.B.: Tables for Normal Tolerance Limits, Sampling Plans, and Screening. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  244. Owen, D.B.: Tables for computing bivariate normal probabilities. Annals of Mathematical Statistics 27, 1075–1090 (1956)

    MATH  MathSciNet  Google Scholar 

  245. Owen, D.B.: Handbook of Statistical Tables. Addison-Wesley, Reading, Massachusetts (1962)

    Google Scholar 

  246. Owen, D.B.: A table of normal integrals. Communications in Statistics: Simulation and Computation 9, 389–419 (Additions and Corrections 10, 537–541) (1980)

    MathSciNet  Google Scholar 

  247. Owen, D.B.: Screening by correlated variates. In: Encyclopedia of Statistical Sciences, Volume 8, S. Kotz and N.L. Johnson (eds.), pp. 309–312. John Wiley and Sons, New York (1988)

    Google Scholar 

  248. Owen, D.B., Haas, R.W.: Tables of the normal conditioned on t-distribution. In: Contributions to Survey Sampling and Applied Statistics. Papers in Honor of H.O. Hartley, H.A. David (ed.), pp. 295–318. Academic Press, New York (1978)

    Google Scholar 

  249. Owen, D.B., Li, L., Chou, Y.M.: Prediction intervals for screening using a measured correlated variable. Technometrics 23, 165–170 (1981)

    Google Scholar 

  250. Parrish, R.S., Bargmann, R.E.: A method for the evaluation of cumulative probabilities of bivariate distributions using the Pearson family. In: Statistical Distributions in Scientific Work, Volume 5: Inferential Problems and Properties, C. Taillie, G.P. Patil, and B.A. Baldessari (eds.), pp. 241–257. Reidel, Dordrecht (1981)

    Google Scholar 

  251. Patel, J.K., Read, C.B.: Handbook of the Normal Distribution. Marcel Dekker, New York (1982)

    MATH  Google Scholar 

  252. Paulson, A.S., Roohan, P., Sullo, P.: Some empirical distribution function tests for multivariate normality. Journal of Statistical Computation and Simulation 28, 15–30 (1987)

    MATH  Google Scholar 

  253. Pearson, K.: Mathematical contributions to the theory of evolution-VII: On the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of London, Series A 195, 1–47 (1901)

    MATH  Google Scholar 

  254. Pearson, K., Young, A.W.: On the product moments of various orders of the normal correlation surface of two variates. Biometrika 12, 86–92 (1918)

    Google Scholar 

  255. Pettitt, A.N.: Testing for bivariate normality using the empirical distribution function. Communications in Statistics: Theory and Methods 8, 699–712 (1979)

    MathSciNet  Google Scholar 

  256. Puente, C.E.: The remarkable kaleidoscopic decompositions of the bivariate Gaussian distribution. Fractals 5, 47–61 (1997)

    MATH  Google Scholar 

  257. Puente, C.E., Klebanoff, A.D.: Gaussians everywhere. Fractals 2, 65–79 (1994)

    Google Scholar 

  258. Qin, Y.S., Smith, B.: The likelihood ratio test for homogeneity in bivariate normal mixtures. Journal of Multivariate Analysis 97, 474–491 (2006)

    MATH  MathSciNet  Google Scholar 

  259. Quandt, R.E., Ramsey, J.B.: Estimating mixtures of normal distributions and switching regressions. Journal of the American Statistical Association 73, 730–738 (Discussion, 738–752) (1978)

    MATH  MathSciNet  Google Scholar 

  260. Quesenberry, C.P.: Probability integral transformations. In: Encyclopedia of Statistical Sciences, Volume 7, S. Kotz and N.L. Johnson (eds.), pp. 225–231. John Wiley and Sons, New York (1986a)

    Google Scholar 

  261. Quesenberry, C.P.: Some transformation methods in goodness-of-fit. In: Goodness-of-Fit Techniques, R.B. D’Agostino, and M.A. Stephens (eds.), pp. 235–277. Marcel Dekker, New York (1986b)

    Google Scholar 

  262. Rao, B.R., Garg, M.L., Li, C.C.: Correlation between the sample variances in a singly truncated bivariate normal distribution. Biometrika 55, 433–436 (1968)

    Google Scholar 

  263. Rao, C.R.: Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation, Proceedings of the Cambridge Philosophical Society 44, 50–57 (1948)

    MATH  Google Scholar 

  264. Rao, C.R.: Some problems in the characterization of the multivariate normal distribution. In: A Modern Course on Distributions in Scientific Work, Volume 3: Characterizations and Applications, G.P. Patil, S. Kotz, and J.K. Ord (eds.), pp. 1–13. Reidel, Dordrecht (1975)

    Google Scholar 

  265. Rayner, J.C.W., Best, D.J., Mathews, K.L.: Interpreting the skewness coefficient. Communications in Statistics: Theory and Methods 24, 593–600 (1995)

    MATH  Google Scholar 

  266. Regier, M.H., Hamdan, M.A.: Correlation in a bivariate normal distribution with truncation in both variables. Australian Journal of Statistics 13, 77–82 (1971)

    MATH  Google Scholar 

  267. Reyment, R.A.: Multivariate normality in morphometric analysis. Mathematical Geology 3, 357–368 (1971)

    Google Scholar 

  268. Rodriguez, R.N.: Correlation. In: Encyclopedia of Statistical Sciences, Volume 2, S. Kotz and N.L. Johnson (eds.), pp. 193–204. John Wiley and Sons, New York (1982)

    Google Scholar 

  269. Rodriguez, R.N.: Frequency surfaces, systems of. In: Encyclopedia of Statistical Sciences, Volume 3, S. Kotz and N.L. Johnson (eds.), pp. 232–247. John Wiley and Sons, New York (1983)

    Google Scholar 

  270. Rom, D., Sarkar, S.K.: Approximating probability integrals of multivariate normal using association models. Journal of Statistical Computation and Simulation 35, 109–119 (1990)

    MathSciNet  Google Scholar 

  271. Romano, J.P., Siegel, A.F.: Counterexamples in Probability and Statistics. Wadsworth and Brooks/Cole, Monterey, California (1986)

    MATH  Google Scholar 

  272. Rosenblatt, M.: Remarks on a multivariate transformation. Annals of Mathematical Statistics 23, 470–472 (1952)

    MATH  MathSciNet  Google Scholar 

  273. Rosenblueth, E.: On computing normal reliabilities. Structural Safety 2, 165–167 (Corrections 3, 67) (1985)

    Google Scholar 

  274. Royston, J.P.: Algorithm AS 181. The W test for normality. Applied Statistics 35, 232–234 (1982)

    Google Scholar 

  275. Royston, J.P.: Some techniques for assessing multivariate normality based on the Shapiro-Wilk W. Applied Statistics 32, 121–133 (1983)

    MATH  Google Scholar 

  276. Ruben, H.: An asymptotic expansion for the multivariate normal distribution and Mill’s ratio. Journal of Research, National Bureau of Standards 68, 3–11 (1964)

    MATH  MathSciNet  Google Scholar 

  277. Ruppert, D.: Trimming and Winsorization. In: Encyclopedia of Statistical Sciences, Volume 9, S. Kotz and N.L. Johnson (eds.), pp. 348–353. John Wiley and Sons, New York (1988)

    Google Scholar 

  278. Ruymgaart, F.H.: Non-normal bivariate densities with normal marginals and linear regression functions. Statistica Neerlandica 27, 11–17 (1973)

    MATH  MathSciNet  Google Scholar 

  279. Sahu, S.K., Dey, D.K., Branco, M.D.: A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics 31, 129–150 (2003)

    MATH  MathSciNet  Google Scholar 

  280. Sarabia, J-M.: The centered normal conditional distributions. Communications in Statistics: Theory and Methods 24, 2889–2900 (1995)

    MATH  MathSciNet  Google Scholar 

  281. Sarmanov, O.V.: Generalized normal correlation and two dimensional Fréchet classes. Soviet Mathematics 7, 596–599 (Original article was in Russian) (1966)

    Google Scholar 

  282. Savage, I.R.: Mills’ ratio for multivariate normal distributions. Journal of Research of the National Bureau of Standards-B: Mathematics and Mathematical Physics 66, 93–96 (1962)

    MATH  Google Scholar 

  283. Schneider, T., Holst, E.: Man-made mineral fibre size distributions utilizing unbiased and fibre length biased counting methods and the bivariate log-normal distribution. Journal of Aerosol Science 14, 139–146 (The authors have noted misprints in their equations (20) and (Appendix 1)) (1983)

    Google Scholar 

  284. Schreuder, H.T., Hafley, W.L.: A useful bivariate distribution for describing stand structure of tree heights and diameters. Biometrics 33, 471–478 (1977)

    Google Scholar 

  285. Schwager, S.J.: Multivariate skewness and kurtosis. In: Encyclopedia of Statistical Sciences, Volume 6, S. Kotz and N.L. Johnson (eds.), pp. 122–125. John Wiley and Sons, New York (1985)

    Google Scholar 

  286. Schweizer, S., Borsuk, M.E., Jowett, I., Reichert, P.: Predicting joint frequency of depth and velocity for instream habitat assessment. River Research and Applications 23, 287–302 (2007)

    Google Scholar 

  287. Seal, H.L.: Studies in the history of probability and statistics. XV. The historical development of the Gauss linear model. Biometrika 54, 1–24 (1967)

    MATH  MathSciNet  Google Scholar 

  288. Shah, S.M., Parikh, N.T.: Moments of singly and doubly truncated standard bivariate normal distribution. Vidya (Gujarat University) 7, 82–91 (1964)

    MathSciNet  Google Scholar 

  289. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965)

    MATH  MathSciNet  Google Scholar 

  290. Shevlyakov, G.L., Vilchevski, N.O.: Minimax variance estimation of a correlation coefficient for ε-contaminated bivariate normal distributions. Statistics and Probability Letters 57, 91–100 (2002)

    MATH  MathSciNet  Google Scholar 

  291. Siegel, A.F., O’Brien, F.: Unbiased Monte Carlo integration methods with exactness for low order polynomials. SIAM Journal of Scientific and Statistical Computation 6, 169–181 (1985)

    MATH  MathSciNet  Google Scholar 

  292. Sievers, G.L.: Probability plotting. In: Encyclopedia of Statistical Sciences, Volume 7, S. Kotz and N.L. Johnson (eds.), pp. 232–237. John Wiley and Sons, New York (1986)

    Google Scholar 

  293. Silverman, B.W.: Density estimation for univariate and bivariate data. In: Interpreting Multivariate Data, V. Barnett (ed.), pp. 37–53. John Wiley and Sons, Chichester (1981)

    Google Scholar 

  294. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  295. Small, N.J.H.: Marginal skewness and kurtosis for testing multivariate normality. Applied Statistics 29, 85–87 (1980)

    Google Scholar 

  296. Small, N.J.H.: Multivariate normality, testing for. In: Encyclopedia of Statistical Sciences, Volume 6, S. Kotz and N.L. Johnson (eds.), pp. 95–100. John Wiley and Sons, New York (1985)

    Google Scholar 

  297. Smirnov, N.V., Bol’shev, L.N.: Tables for Evaluating a Function of a Bivariate Normal Distribution (in Russian). Is’datel’stov Akademii Nauk SSSR, Moscow (1962)

    Google Scholar 

  298. Sondhauss, U.: Asymptotische Eigenschaften intermediärer Ordnungs-statistiken und ihrer Konkomitanten, Diplomarbeit. Department of Statistics, Dortmund University, Germany (1994)

    Google Scholar 

  299. Sowden, R.R., Ashford, J.R.: Computation of bivariate normal integral. Applied Statistics 18, 169–180 (1969)

    MathSciNet  Google Scholar 

  300. Springer, M.D.: The Algebra of Random Variables. John Wiley and Son, New York (1979)

    MATH  Google Scholar 

  301. Srivastava, M.S.: A measure of skewness and kurtosis and a graphical method for assessing multivariate normality. Statistics and Probability Letters 2, 263–267 (1984)

    MathSciNet  Google Scholar 

  302. Srivastava, M.S., Hui, T.K.: On assessing multivariate normality based on Shapiro-Wilk statistic. Statistics and Probability Letters 5, 15–18 (1987)

    MATH  MathSciNet  Google Scholar 

  303. Stephens, M.A.: Tests based on EDF statistics. In: Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.), pp. 97–193. Marcel Dekker, New York (1986a)

    Google Scholar 

  304. Stephens, M.A.: Tests based on regression and correlation. In: Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.), pp. 195–233. Marcel Dekker, New York (1986b)

    Google Scholar 

  305. Sun, Y., Wong, A.C.M.: Interval estimation for the normal correlation coefficient. Statistics and Probability Letters 77, 1652–1661 (2007)

    MATH  MathSciNet  Google Scholar 

  306. Sungur, E.A.: Dependence information in parametrized copulas. Communications in Statistics: Simulation and Computation 19, 1339–1360 (1990)

    MATH  MathSciNet  Google Scholar 

  307. Suzuki, M.: Estimation in a bivariate semi-lognormal distribution. Behaviormetrika 13, 59–68 (1983)

    Google Scholar 

  308. Suzuki, M., Iwase, K., Shimizu, K.: Uniformly minimum variance unbiased estimation in a semi-lognormal distribution. Journal of the Japan Statistical Society 14, 63–68 (1984)

    MATH  MathSciNet  Google Scholar 

  309. Tanabe, K., Sagae, M., Ueda, S.: BNDE, Fortran Subroutines for Computing Bayesian Nonparametric Univariate and Bivariate Density Estimator. Computer Science Monograph No. 24, Institute of Statistical Mathematics, Tokyo (1988)

    Google Scholar 

  310. Tarter, M., Silvers, A.: Implementation and applications of a bivariate Gaussian mixture decomposition. Journal of the American Statistical Association, 70, 47–55 (1975)

    MATH  Google Scholar 

  311. Terza, J., Welland, U.: A comparison of bivariate normal algorithms. Journal of Statistical Computation and Simulation 39, 115–127 (1991)

    Google Scholar 

  312. Thadewald, T., Büning, H.: Jarque–Bera test and its competitors for testing normality: A power comparison. Journal of Applied Statistics 34, 87–105 (2007)

    MATH  MathSciNet  Google Scholar 

  313. Thomas, G.E.: Remark AS R30: A remark on Algorithm AS 76: An integral in calculating noncentral t and bivariate normal probabilities. Applied Statistics 28, 113 (1979)

    Google Scholar 

  314. Thomopoulos, N.T., Longinow, A.: Bivariate lognormal probability distribution. Journal of Structural Engineering 110, 3045–3049 (1984)

    Google Scholar 

  315. Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical Analysis of Finite Mixture Distributions. John Wiley and Sons, New York (1985)

    MATH  Google Scholar 

  316. Tong, Y.L.: Probability Inequalities in Multivariate Distributions. Academic Press, New York (1980)

    MATH  Google Scholar 

  317. Tsou, T.-S.: Robust inference for the correlation coefficient: A parametric method. Communications in Statistics: Theory and Methods 34, 147–162 (2005)

    MATH  MathSciNet  Google Scholar 

  318. Tukey, P.A., Tukey, J.W.: Data-driven view selection: Agglomeration and sharpening. In: Interpreting Multivariate Data, V. Barnett (ed.), pp. 215–243. John Wiley and Sons, Chichester (1981)

    Google Scholar 

  319. Ulrich, G.: A class of multivariate distributions with applications in Monte Carlo and simulation. In: American Statistical Association, 1984 Proceedings of the Statistical Computing Section, pp. 185–188. American Statistical Associate, Alexandria, Virginia (1984)

    Google Scholar 

  320. Vale, C.D., Maurelli, V.A.: Simulating multivariate nonnormal distributions. Psychometrika 48, 465–471 (1983)

    MATH  Google Scholar 

  321. van Yzeren, J.: A bivariate distribution with instructive properties as to normality, correlation and dependence. Statistica Neerlandica 26, 55–56 (1972)

    MATH  MathSciNet  Google Scholar 

  322. van Zyl, J.M.: Planar random movement and the bivariate normal density. South African Statistical Journal 21, 1–12 (1987)

    MATH  MathSciNet  Google Scholar 

  323. Versluis, C.: Comparison of tests for bivariate normality with unknown parameters by transformation to a univariate statistic. Communications in Statistics: Theory and Methods 25, 647–665 (1996)

    MATH  MathSciNet  Google Scholar 

  324. Wachter, K.W.: Haar distributions. In: Encyclopedia of Statistical Sciences, Volume 3, S. Kotz and N.L. Johnson (eds.), pp. 559–562. John Wiley and Sons, New York (1983)

    Google Scholar 

  325. Wang, M., Kennedy, W.J.: Comparison of algorithms for bivariate normal probability over a rectangle based on self-validated results from interval analysis. Journal of Statistical Computation and Simulation 37, 13–25 (1990)

    MATH  Google Scholar 

  326. Wang, Y.: The probability integrals of bivariate normal distributions: A contingency table approach. Biometrika 74, 185–190 (1987)

    MATH  MathSciNet  Google Scholar 

  327. Warren, W.G.: Some recent developments relating to statistical distributions in forestry and forest products research. In: Statistical Distributions in Ecological Work, J.K. Ord, G.P. Patil, and C. Taillie (eds.), pp. 247–250. International Co-operative Publishing House, Fairland, Maryland (1979)

    Google Scholar 

  328. Wasan, M.T.: On an inverse Gaussian process. Skandinavisk Aktuarietidskrift 1968, 69–96 (1968)

    MathSciNet  Google Scholar 

  329. Wasan, M.T., Buckholtz, P.: Differential representation of a bivariate inverse Gaussian process. Journal of Multivariate Analysis 3, 243–247 (1973)

    MATH  MathSciNet  Google Scholar 

  330. Watterson, G.A.: Linear estimation in censored samples from multivariate normal populations. Annals of Mathematical Statistics 30, 814–824 (1959)

    MATH  MathSciNet  Google Scholar 

  331. Welland, U., Terza, J.V.: Bivariate normal approximation: Gauss–Legendre quadrature applied to Sheppard’s formula. Working Paper, Department of Economics, Pennsylvania State University, State College, Pennsylvania (1987)

    Google Scholar 

  332. Willink, R.: Bounds on bivariate normal distribution. Communications in Statistics: Theory and Methods 33, 2281–2297 (2004)

    MATH  MathSciNet  Google Scholar 

  333. Wilson, J.R.: Fitting Johnson curves to univariate and multivariate data. In: 1983 Winter Simulation Conference Proceedings, Volume 1, S. Roberts, J. Banks, and B. Schmeiser (eds.), pp. 114–115. Institute of Electrical and Electronics Engineers, Piscataway, New Jersey (1983)

    Google Scholar 

  334. Wolfe, J.E.: Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research 5, 329–350 (1970)

    Google Scholar 

  335. Young, J.C., Minder, C.E.: Algorithm AS 76: An integral useful in calculating non-central t and bivariate normal probabilities. Applied Statistics 23, 455–457 (Corrections 27, 379; 28, 113; 28, 336; 34, 100–101 and 35, 310–312) (1974). [Reprinted with revisions in P. Griffiths and I.D. Hill (eds.), Applied Statistics Algorithms, pp. 145–148. Ellis Horwood, Chichester (1985).]

    Google Scholar 

  336. Yu, P.L.H.: Lam, K.: Regression estimator in ranked set sampling. Biometrics 53, 1070–1080 (1997)

    MATH  Google Scholar 

  337. Yu, P.L.H., Sun, Y., Sinha, B.K.: Estimation of the common mean of a bivariate normal population. Annals of the Institute of Statitical Mathematics 54, 861–878 (2002)

    MATH  MathSciNet  Google Scholar 

  338. Yuan, P-T.: On the logarithmic frequency distribution and the semi-logarithmic correlation surface. Annals of Mathematical Statistics 4, 30–74 (1933)

    Google Scholar 

  339. Yue, S.: The bivariate lognormal distribution to model a multivariate flood episode. Hydrological Process 14, 2575–2588 (2000)

    Google Scholar 

  340. Yue, S.: The bivariate lognormal distribution for describing joint statistical properties of a multivariate storm event. Environmetrics 13, 811–819 (2002)

    Google Scholar 

  341. Zelen, M., Severo, N.C.: Graphs for bivariate normal probabilities. Annals of Mathematical Statistics 31, 619–624 (1960)

    MATH  MathSciNet  Google Scholar 

  342. Zerehdaran, S., van Grevehof, E.A., van der Waaij, E.H., Bovenhuis, H.: A bivariate mixture model analysis of body weight and ascites traits in broilers. Poultry Science 85, 32–38 (2006)

    Google Scholar 

  343. Zhang, P.: Omnibus test for normality using Q statistic. Journal of Applied Statistics 26, 519–528 (1999)

    MATH  MathSciNet  Google Scholar 

  344. Zhang, Y.C.: Derivative fitting procedure for computing bivariate normal distributions and some applications. Structural Safety 14, 173–183 (1994)

    Google Scholar 

  345. Zheng, G., Modarres, R.: A robust estimate for the correlation coefficient for bivariate normal distribution using ranked set sampling. Journal of Statistical Planning and Inference 136, 298–309 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Balakrishna .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Balakrishna, N., Lai, C.D. (2009). Bivariate Normal Distribution. In: Continuous Bivariate Distributions. Springer, New York, NY. https://doi.org/10.1007/b101765_12

Download citation

Publish with us

Policies and ethics