Skip to main content
Log in

The 2–3 mixing and mass split: atmospheric neutrinos and magnetized spectrometers

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study dependence of the atmospheric νμ and \( {\bar{\nu }_\mu } \) fluxes on the deviations of the 2–3 mixing from maximal, |45° − θ 23|, on the θ 23-octant and on the neutrino mass splitting ∆m 232 . Analytic expressions for the θ 23-deviation effect and the octant asymmetry are derived. We present conservative estimations of sensitivities of the iron (magnetized) calorimeter detectors (ICAL) to these parameters. ICAL can establish the θ 23-deviation at higher than 3σ confidence level if |45° − θ 23| > 6° with the exposure of 1 Mton·yr. Sensitivity to the octant is low for zero or very small 1–3 mixing, but it can be substantially enhanced for θ 13 > 3°. ICAL can measure the difference of ∆m 232 in ν and \( \bar{\nu } \) channels (the CPT test) with accuracy 0.8 × 10−4 eV2 (3σ) with 1 Mton·yr exposure, and the present MINOS result can be excluded at > 5σ confidence level. We discuss possible ways to further improve sensitivity of the magnetized spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Mohapatra and A.Y. Smirnov, Neutrino mass and new physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [SPIRES].

    Article  ADS  Google Scholar 

  2. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].

    Article  ADS  Google Scholar 

  3. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].

    Article  ADS  Google Scholar 

  4. Super-Kamiokande collaboration, J. Hosaka et al., Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 74 (2006) 032002 [hep-ex/0604011] [SPIRES].

    ADS  Google Scholar 

  5. The MINOS collaboration, P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS, Phys. Rev. Lett. 106 (2011) 181801 [arXiv:1103.0340] [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Kopp, P.A.N. Machado and S.J. Parke, Interpretation of MINOS data in terms of non-standard neutrino interactions, Phys. Rev. D 82 (2010) 113002 [arXiv:1009.0014] [SPIRES].

    ADS  Google Scholar 

  7. INO collaboration, V. Arumugam et al., India-based Neutrino Observatory: interim project report. Vol. 1, http://www.imsc.res.in/∼ino/OpenReports/INOReport.pdf [SPIRES].

  8. T2K collaboration, I. Kato, Status of the T2K experiment, J. Phys. Conf. Ser. 136 (2008) 022018 [SPIRES].

    Article  ADS  Google Scholar 

  9. NOvA collaboration, D.S. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μ  → ν e in the Fermilab NuMI beamline, hep-ex/0503053 [SPIRES].

  10. C.W. Kim and U.W. Lee, Comment on the possible electron-neutrino excess in the Super-Kamiokande atmospheric neutrino experiment, Phys. Lett. B 444 (1998) 204 [hep-ph/9809491] [SPIRES].

    ADS  Google Scholar 

  11. O.L.G. Peres and A.Y. Smirnov, Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and CP-violation, Nucl. Phys. B 680 (2004) 479 [hep-ph/0309312] [SPIRES].

    Article  ADS  Google Scholar 

  12. O.L.G. Peres and A.Y. Smirnov, Oscillations of very low energy atmospheric neutrinos, Phys. Rev. D 79 (2009) 113002 [arXiv:0903.5323] [SPIRES].

    ADS  Google Scholar 

  13. M.C. Gonzalez-Garcia, M. Maltoni and A.Y. Smirnov, Measuring the deviation of the 2–3 lepton mixing from maximal with atmospheric neutrinos, Phys. Rev. D 70 (2004) 093005 [hep-ph/0408170] [SPIRES].

    ADS  Google Scholar 

  14. S. Choubey and P. Roy, Probing the deviation from maximal mixing of atmospheric neutrinos, Phys. Rev. D 73 (2006) 013006 [hep-ph/0509197] [SPIRES].

    ADS  Google Scholar 

  15. D. Indumathi, M.V.N. Murthy, G. Rajasekaran and N. Sinha, Neutrino oscillation probabilities: sensitivity to parameters, Phys. Rev. D 74 (2006) 053004 [hep-ph/0603264] [SPIRES].

    ADS  Google Scholar 

  16. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].

    Article  ADS  Google Scholar 

  17. A. Samanta, Exceptional sensitivities of neutrino mixing parameters with atmospheric neutrinos, Phys. Rev. D 80 (2009) 113003 [arXiv:0812.4639] [SPIRES].

    ADS  Google Scholar 

  18. E.K. Akhmedov, M. Maltoni and A.Y. Smirnov, Neutrino oscillograms of the Earth: effects of 1–2 mixing and CP-violation, JHEP 06 (2008) 072 [arXiv:0804.1466] [SPIRES].

    Article  ADS  Google Scholar 

  19. A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. In. 25 (1981) 297 [SPIRES].

    Article  ADS  Google Scholar 

  20. D. Casper, The nuance neutrino physics simulation and the future, Nucl. Phys. Proc. Suppl. 112 (2002) 161 [hep-ph/0208030] [SPIRES].

    Article  ADS  Google Scholar 

  21. http://geant4.web.cern.ch/geant4/.

  22. A. Samanta, A comparison of the sensitivities of the parameters with atmospheric neutrinos for different analysis methods, Phys. Rev. D 79 (2009) 053011 [arXiv:0812.4640] [SPIRES].

    ADS  Google Scholar 

  23. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [SPIRES].

    ADS  Google Scholar 

  24. A. Samanta, Discrimination of the mass hierarchy with atmospheric neutrinos at a magnetized muon detector, Phys. Rev. D 81 (2010) 037302 [arXiv:0907.3540] [SPIRES].

    ADS  Google Scholar 

  25. SNO collaboration, B. Aharmim et al., Low energy threshold analysis of the phase I and phase II data sets of the Sudbury neutrino observatory, Phys. Rev. C 81 (2010) 055504 [arXiv:0910.2984] [SPIRES].

    ADS  Google Scholar 

  26. M. Mezzetto and T. Schwetz, θ 13 : phenomenology, present status and prospect, J. Phys. G 37 (2010) 103001 [arXiv:1003.5800] [SPIRES].

    ADS  Google Scholar 

  27. K. Hiraide et al., Resolving θ 23 degeneracy by accelerator and reactor neutrino oscillation experiments, Phys. Rev. D 73 (2006) 093008 [hep-ph/0601258] [SPIRES].

    ADS  Google Scholar 

  28. T. Kajita, H. Minakata, S. Nakayama and H. Nunokawa, Resolving eight-fold neutrino parameter degeneracy by two identical detectors with different baselines, Phys. Rev. D 75 (2007) 013006 [hep-ph/0609286] [SPIRES].

    ADS  Google Scholar 

  29. D. Meloni, O. Mena, C. Orme, S. Palomares-Ruiz and S. Pascoli, An intermediate gamma beta-beam neutrino experiment with long baseline, JHEP 07 (2008) 115 [arXiv:0802.0255] [SPIRES].

    Article  ADS  Google Scholar 

  30. P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [SPIRES].

    Article  ADS  Google Scholar 

  31. P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Prospects of accelerator and reactor neutrino oscillation experiments for the coming ten years, Phys. Rev. D 70 (2004) 073014 [hep-ph/0403068] [SPIRES].

    ADS  Google Scholar 

  32. P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Combined potential of future long-baseline and reactor experiments, Nucl. Phys. Proc. Suppl. 145 (2005) 190 [hep-ph/0412133] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Samanta.

Additional information

ArXiv ePrint: 1012.0360

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, A., Smirnov, A.Y. The 2–3 mixing and mass split: atmospheric neutrinos and magnetized spectrometers. J. High Energ. Phys. 2011, 48 (2011). https://doi.org/10.1007/JHEP07(2011)048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)048

Keywords

Navigation