Skip to main content
Log in

Holographic metals at finite temperature

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A holographic dual description of a 2+1 dimensional system of strongly interacting fermions at low temperature and finite charge density is given in terms of an electron cloud suspended over the horizon of a charged black hole in asymptotically AdS spacetime. The electron star of Hartnoll and Tavanfar is recovered in the limit of zero temperature, while at higher temperatures the fraction of charge carried by the electron cloud is reduced and at a critical temperature there is a third order phase transition to a configuration with only a charged black hole. The geometric structure implies that finite temperature transport coefficients, including the AC electrical conductivity, only receive contributions from bulk fermions within a finite band in the radial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  2. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  4. S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. (2010) P11022 [arXiv:1010.0682] [SPIRES].

  5. S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, arXiv:1008.2828 [SPIRES].

  6. J. de Boer, K. Papadodimas and E. Verlinde, Holographic neutron stars, JHEP 10 (2010) 020 [arXiv:0907.2695] [SPIRES].

    Article  Google Scholar 

  7. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].

    Article  ADS  Google Scholar 

  8. X. Arsiwalla, J. de Boer, K. Papadodimas and E. Verlinde, Degenerate stars and gravitational collapse in AdS/CFT, arXiv:1010.5784 [SPIRES].

  9. V. Parente and R. Roychowdhury, A study on charged neutron star in AdS 5, arXiv:1011.5362 [SPIRES].

  10. S.A. Hartnoll and P. Petrov, Electron star birth: a continuous phase transition at nonzero density, arXiv:1011.6469 [SPIRES].

  11. M. Čubrović, J. Zaanen and K. Schalm, Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair, arXiv:1012.5681 [SPIRES].

  12. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [SPIRES].

    Article  ADS  Google Scholar 

  18. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  19. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  21. S.A. Hartnoll, D.M. Hofman and A. Tavanfar, Holographically smeared Fermi surface: quantum oscillations and Luttinger count in electron stars, arXiv:1011.2502 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Giangreco M. Puletti.

Additional information

ArXiv ePrint: 1011.6261

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puletti, V.G.M., Nowling, S., Thorlacius, L. et al. Holographic metals at finite temperature. J. High Energ. Phys. 2011, 117 (2011). https://doi.org/10.1007/JHEP01(2011)117

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)117

Keywords

Navigation