Skip to main content
Log in

On the Phylum Vetulicolia

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The origins and radiations of metazoans, bilaterians, deuterostomes and vertebrates have been recognized as the four most important milestone events in animal history and, conversely four of the toughest and puzzling questions in evolutionary biology. Among them, the first two occurred in the deep time of the Precambrian and have left little information in the fossil records. Fortunately, intensive investigation into the Early Cambrian Chengjiang faunas in the past two decades have revealed numerous significant data on the main episode of the Cambrian Explosion, particularly information on the various earliest-known deuterostomes, leading to a much better understanding of the last two events. The “first fish”Haikouichthys andMyllokunmingia have been proved the oldest-known vertebrates, and to be among the most primitive ones, representing a key transitional group from acraniates to craniates. Indeed, “Paleontological work of Shu and collaborators is revising our understanding of the early evolution of chordates”. Moreover, the discovery of the Phylum Vetulicolia may also throw new light on the origin of deuterostomes. This extinct group with simple gill slits might represent one of the roots in the deuterostome lineage, as the evidence of molecular biology and developmental biology has predicted. Here the first discovery of tiny vetulicolians from the Chengjiang Lagerstätte is reported. The evolutionary trend from the giant to the small might represent a special adaptation in early animal history. Since all vetulicolians share similar characters in their anterior section (pharynx), and on the basis of differences in their posterior section, a new classification system is proposed, with a new class, the Heteromorphida erected. As both the “root” group vetulicolians and the “top” group vertebrates in the early deuterostome lineage, as well as those members in between, such as vetulocystids, yunnanozoans, cephalochordates and urochordates, have been recovered, a relatively complete early deuterostome phylogeny, which is compatible with phylogenies of extant deuterostomes, is nearly mature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shu, D., Guidance to reading “On the Origin of Species” by Ch. Darwin, in Chinese Translation of On the Origin of Species, Beijing: Peking University Press, 2005; Xian: Shaanxi People Press, 2001.

    Google Scholar 

  2. Finnerty, J. R., Martindale, M. Q., The evolution of Hox cluster: insights from outgroup, Curr. Opin. Genet. Dev., 1998, 8: 681–687.

    Article  Google Scholar 

  3. Knoll, A., Carroll, S. B., Early animal evolution: emerging views from comparative biology and geology, Science, 1999, 284: 2129–2137.

    Article  Google Scholar 

  4. Nielsen, C., Animal Evolution: interrelationships of living phyla, 2nd Ed., Oxford: Oxford University Press, 2001, 1–562.

    Google Scholar 

  5. Dawkins, R., The Ancestor’s Tale-A Pilgrimage to the Dawn of Life, New York: Weidenfeld & Nicolson, 2004, 1–528.

    Google Scholar 

  6. Ayala, F. J., Rzhetsky, A., Origin of metazoan phyla, Molecular clocks confirm palaeontological estimates. Proc. Natl. Acad. Sci, USA, 1998, 95: 606–611.

    Article  Google Scholar 

  7. Signor, P. W., Lipps, J. H., Origin and Radiation of the Metazoa, in Origin and Early Evolution of the Metazoa (eds. Lipps, J. H., Signor, P. W.), New York: Plenum Press, 1992, 3–23.

    Google Scholar 

  8. Collins, A. G., Evaluating multiple alternative hypotheses for the origin of Bilateria, Proc. Natl. Acad. Sci. USA, 1998, 95: 15458–15463.

    Article  Google Scholar 

  9. Halanych, K. M., Considerations for reconstructing metazoan history: signal, resolution, and hypothesis testing, Am. Zool., 1998, 38: 929–941.

    Google Scholar 

  10. Peterson, K. J., Butterfield, N. J., Origin of the Eumetazoa: Testing ecological prediction of molecular clock against the Proterozoic fossil record, PNAS, 2005, 102(27): 9547–9552.

    Article  Google Scholar 

  11. Glaessner, M. F., The Dawn of Animal Life, Cambridge: Cambridge University Press, 1984.

    Google Scholar 

  12. Fedonkin, M., Vendian body fossils and trace fossils, in Early Life on Earth, Nobel Symposium No. 84, (ed. Bengtson, S.), New York: Columbia University, 1994, 370–388.

    Google Scholar 

  13. Conway Morris, S., The Ediacaran biota and early metazoan evolution, Geol. Mag., 1985, 122: 77–81.

    Article  Google Scholar 

  14. Yuan, X., Xiao, S., Yin, L. et al. Doushantuo Fossils: Life on the Eve of Animal Radiation, Hefei: University of Science and Technology of China Press, 2002, 1–171.

    Google Scholar 

  15. Xiao, S., Zhang, Y., Knoll, A., Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, 1998, 391: 553–558.

    Article  Google Scholar 

  16. Xiao, S., Yuan, X., Knoll, A., Eumetazoan fossils in terminal Proterozoic phosphorites. PNAS, 2000, 97(25): 13684–13689.

    Article  Google Scholar 

  17. Chen, J., Bottjer, D., Oliveri, P. et al., Small Bilaterian Fossils from 40 to 55 Million Years before the Cambrian, Science, 2004, 305: 218–222.

    Article  Google Scholar 

  18. Bengtson, S., Budd, G., Comment on “Small Bilaterian Fossils from 40 to 55 Million Years before the Cambrian”, Science, 2004, 305: 1291.

    Article  Google Scholar 

  19. Garstang, W., The morphology of the Tunicata and its bearing on the phylogeny of the Chordata, J. of the Microscopical Society, 1928, 72: 51–87

    Google Scholar 

  20. Romer, A. S., The Vertebrate Body, Third ed., London: W.B. Saunders Company, 1964, 1–626.

    Google Scholar 

  21. Janvier, P., Early Vertebrates, Oxford: Clarendon, 1996.

    Google Scholar 

  22. Kardong, K., Vertebrates--Comparative Anatomy, Function, Evolution, Second ed., Boston: McGraw-Hill, 1998, 1–747.

    Google Scholar 

  23. Shu, D., Luo, H., ConwayMorris, S., et al., Early Cambrian vertebrates from South China, Nature, 1999, 402: 42–46.

    Article  Google Scholar 

  24. Janvier, P., Catching the first fish, Nature, 1999, 402: 21–22

    Article  Google Scholar 

  25. Shu, D., Chen, L., Mosaic evolution of the earliest-known vertebrates, Geosciences (in Chinese with English summery), 2000, 14: 315–322.

    Google Scholar 

  26. Shu, D., Conway Morris, S., Han, J., et al., Head and Backbone of the Cambrian vertebrateHaikouichthys, Nature, 2003, 421: 526–529.

    Article  Google Scholar 

  27. Shu, D., A paleontological perspective of vertebrate origin, Chinese Science Bulletin, 2003, 48(8): 725–735.

    Google Scholar 

  28. Janvier, P., Vertebrate characters and the Cambrian vertebrates, Palevol, 2003, 2: 523–531.

    Article  Google Scholar 

  29. Zhang, X. G., Hou, X., Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate,Haikouichthys ercaicunensis, Journal of Evolutionary Biology, 2004, 17: 1157–1161.

    Article  Google Scholar 

  30. Halanych, K. M., The new view of animal phylogeny, Annual Reviews of Ecology and Evolutionary Systematics, 2004, 35: 229–256.

    Article  Google Scholar 

  31. Schaeffer, B., Deuterostome monophyly and phylogeny, Evol. Biol., 1987, 21: 179–235.

    Google Scholar 

  32. Gee, H., Deuterostome phylogeny: the context for the origin and evolution of the vertebrates, in Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, genetics and development (ed. Ahlberg, P. E.), London: Taylor & Francis, 2001, 1–14.

    Google Scholar 

  33. Shu, D., Conway Morris, S., Han, J., et al., Primitive deuterostomes from the Chengjiang Lagerstatte (Lower Cambrian, China), Nature 2001, 414: 419–424

    Article  Google Scholar 

  34. Gee, H., On the vetulicolians, Nature, 2001, 414: 407–409

    Article  Google Scholar 

  35. Conway Morris, S., Shu, D., Deuterostome Evolution, in McGraw-Hill yearbook of Science and Technology, New York: McGraw-Hill, 2003, 79–82.

    Google Scholar 

  36. Shu, D., Conway Morris, S., Han, J. et al., Ancestral echinoderms from the Chengjiang deposits of China, Nature 2004, 430: 422–428

    Article  Google Scholar 

  37. Lacalli, T. C., Vetulicolians are they deuterostomes? chordates? BioEssays, 2002, 24: 208–211.

    Article  Google Scholar 

  38. Chen, A., Feng, H., Zhu, M. et al., A new vetulicolian from the early Cambrian Chengjiang fauna in Yunnan of China, Acta Geologica. Sinica, 2003, 77(3): 281–287.

    Google Scholar 

  39. Valentine, J., On the Origin of Phyla, Chicago: Chicago University Press, 2004, 1–614.

    Google Scholar 

  40. Luo, H., Fu, X., Hu, S. et al., New vetulicolids from the Lower Cambrian Guanshan Fauna, Kunming, Acta Geologica Sinica, 2005. 79(1): 1–6.

    Google Scholar 

  41. Hou, X. G., Early Cambrian large bivalved arthropods from Chengjiang, eastern Yunnan, Acta Palaeontologica, 1987, 26(3): 286–298.

    Google Scholar 

  42. Hou, X. G., Ramskoeld, L., Bergstroem, J., Composition and preservation of the Chengjiang fauna—a Lower Cambrian soft-bodied biota, Zool. Scripta, 1991, 20: 395–411.

    Article  Google Scholar 

  43. Chen, J., Zhou, G., Biology of the Chengjiang fauna, Bulletin of National Museum of Natural Science (Taichung), 1997, 10: 11–105.

    Google Scholar 

  44. Chen, J., The Dawn of Animal World, Nanjing: Jiangsu Science & Technology Publishing House, 2004, 1–366.

    Google Scholar 

  45. Chen, J., Dzik, J., Edgecombe, G. D. et al., A possible early Cambrian chordate, Nature, 1995, 377: 720–722.

    Article  Google Scholar 

  46. Chen, J., Huang, D. Li, C. W., An Early Cambrian craniate-like chordate, Nature, 1999, 402: 518–521.

    Article  Google Scholar 

  47. Dzik, J.,Yunnanozoon and ancestry of chordates, Acta Palaeont. Polonica, 1995, 40: 341–360.

    Google Scholar 

  48. Holland, H. D., Chen, J., Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology, BioEssays, 2001, 23: 142–151.

    Article  Google Scholar 

  49. Mallatt, J., Chen, J., Fossil sister group of craniates: Predicted and found, Journal of Morphology, 2003, 258(1): 1–31.

    Article  Google Scholar 

  50. Shu, D., Zhang, X. L., Chen, L., Reinterpretation ofYunnanozoon as the earliest known hemichordate, Nature, 1996, 380: 428–430.

    Article  Google Scholar 

  51. Smith, M. P., Sansom, I. J., Cochrane, D., The Cambrian origin of vertebrates, in Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, genetics and development (ed. Ahlberg, P.), London: Taylor & Francis, 2001, 67–84.

    Google Scholar 

  52. Shu, D., Conway Morris, S., Zhang, Z. et al., A New Species of Yunnanozoan with Implications for Deuterostome Evolution, Science, 2003, 299: 1380–1384.

    Article  Google Scholar 

  53. Shu, D., Conway Morris, S., Response to Comment on “A New Species of Yunnanozoan with Implications for Deuterostome Evolution”, Science, 2003, 300: 1372, 1372.

    Article  Google Scholar 

  54. Steiner, M., Zhu, M., Zhao, Y. et al., Lower Cambrian Burgess shale-type fossil associations of south China, Palaeogeography, Palaeoclimatology, Palaeoecology, Special Issue, 2005, 220: 12–152.

    Google Scholar 

  55. Shu, D., Zhang, X. L., Chen, L., New advance in the Study of the Chengjiang fossil Lagerstatte, Progress in Geology of China (1993–1996), 30th IGC, Beijing, 1996, 42–46.

  56. Shu, D., Conway Morris, S., Zhang, X. L. et al., A pipiscid-like fossil from the Lower Cambrian of South China, Nature, 1999, 400: 746–749.

    Article  Google Scholar 

  57. Luo, H., Hu, S., Chen, L. et al., Early Cambrian Chengjiang fauna from Kunming region, China, Kunming: Yunnan Science and Technology Press, 1999, 1–129.

    Google Scholar 

  58. Winchell, C. J., Sullivan, J., Cameron, C. B. et al., Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data, Molecular Biology and Evolution, 2002, 19(5): 762–776.

    Google Scholar 

  59. Holland, L. Z., Kene, M., William, N. A. et al., Sequence and embryonic expression of the amphioxusengrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog inDrosophila, Development, 1997, 124: 1723–1732.

    Google Scholar 

  60. Stollewerk, A., Schoppmeier, M., Damen, W. G., Involvement ofNotch andDelta genes in spider segmentation. Nature, 2003, 423: 863–865.

    Article  Google Scholar 

  61. Jefferies, R. P. S., The ancestry of the vertebrates, London: Cambridge University Press, 1986.

    Google Scholar 

  62. Jefferies, R. P. S., A defense of the calcichordates, Lethaia, 1997. 30: 1–10.

    Google Scholar 

  63. Jefferies, R. P. S., The origin and early fossil history of the chordate acustio-lateralis system, with remarks on the reality of the echinoderm-hemichordate clade, in Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, genetics and development (ed. Ahlberg, P.), London: Taylor & Francis, 2001, 40–66.

    Google Scholar 

  64. Ruppert, E. E., Cameron, C. B., Frick, J. F., Endostyle-like features of the dorsal epibranchial ridge of an enteropneust and the hypothesis of dorsal-ventral axis inversion in chordates, Invert. Biol., 1999, 118: 202–212.

    Article  Google Scholar 

  65. Smith, A., Echinoderm roots, Nature 2004, 430: 411–412.

    Article  Google Scholar 

  66. Bergstroem, J., Ideas on early animal evolution, in Early Life on Earth, Nobel Symposium No. 84 (ed. Bengtson, S.), New York: Columbia University, 1994, 460–466.

    Google Scholar 

  67. Briggs, D. G., Erwin, D. H., Collier, F. J., The Fossils of the Burgess Shale, Washington: Smithsonian Institution Press, 1994, 1–238.

    Google Scholar 

  68. Christen, R., Molecular phylogeny and the origin of Metazoa, in Early Life on Earth, Nobel Symposium No. 84 (ed. Bengtson, S.), New York: Columbia University, 1994, 467–474.

    Google Scholar 

  69. Conway Morris, S., Early metazoan evolution: First steps to an integration of molecular and morphological data, in Early Life on Earth, Nobel Symposium No. 84 (ed. Bengtson, S.), New York: Columbia University, 1994, 450–459.

    Google Scholar 

  70. Conway Morris, S., Cambrian Lagerstatten: their distribution and significance. Philosophical Transactions of the Royal Society of London B 1985, 311: 49–65.

    Article  Google Scholar 

  71. Conway Morris, S., The Crucible of Creation: The Burgess Shale and the Rise of Animals, Cambridge: Cambridge Univ. Press, 1998, 1–242.

    Google Scholar 

  72. Valentine, J., The Cambrian explosion, in Early Life on Earth, Nobel Symposium No. 84 (ed. Bengtson, S.), New York: Columbia University, 1994, 401–411.

    Google Scholar 

  73. Chen, J., Huang, D., Peng, Q. et al. The first tunicate from the early Cambrian of South China, in Proceedings of the National Academy of Sciences of the USA, 2003, 100(14): 8314–8318.

  74. Luo, H. L., Hu, S., Chen, L. Z., New Early Cambrian chordates from Haikou, Kunming, Acta Geologica Sinica, 2001, 75: 345–348.

    Google Scholar 

  75. Shu, D., Conway Morris, S., Zhang, X. L., A Pikaia-liks chordate from the Lower Cambrian of China, Nature, 1996, 384: 157–158.

    Article  Google Scholar 

  76. Shu, D., Chen, L., Han, J. et al., The early Cambrian tunicate from South China, Nature, 2001, 411: 472–473.

    Article  Google Scholar 

  77. Zhang, X. L., Shu, D., Li, Y. et al., New sites of Chengjiang fossils: crucial windows on the Cambrian explosion, J. Geol. Society, Lond., 2001, 158: 211–218.

    Google Scholar 

  78. Berrill, N. J., The Origin of Vertebrates, Oxford: Oxford University Press, 1955.

    Google Scholar 

  79. Bromham, L. D., Degnan, B. M., Hemichordate and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade, Evol. Dev., 1999, 1: 166–171.

    Article  Google Scholar 

  80. Turner, S., Blieck, A. R. M., Nowlan, G. S., Cambrian-Ordovician vertebrates, in The Great Ordovician Biodiversity Event, IGCP410 (eds. Webby, B., Droser, M., Feist, R. et al.), New York: Columbia University Press, 2004, 327–335.

    Google Scholar 

  81. Briggs, D. G., Lieberman, B. S., Halgedah, S. L. et al., A new metazoan from the middle Cambrian of Utah and the nature of the Vetulicolia, Palaeontology, 2005, 48(4): 681–686.

    Article  Google Scholar 

  82. Briggs, D. G., Fortey, R. A., Wonderful strife: Systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. in Macroevolution: Diversity, Disparity, Contingency (eds. Vrba, E. S., Eldredge, N.), Kansas: The Paleontological Society, Lawrence, Supplement to Paleobiology, 2005, 31(2): 94–112.

    Google Scholar 

  83. Hou, X., Aldridge, R. J., Siveter, D. J. et al., New evidence on the anatomy and phylogeny of the earliest vertebrates. Proceedings of Royal Society of London, B, 2002, 269: 1865–1869.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Degan Shu.

About this article

Cite this article

Shu, D. On the Phylum Vetulicolia. Chin.Sci.Bull. 50, 2342–2354 (2005). https://doi.org/10.1007/BF03183746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183746

Keywords

Navigation