Skip to main content
Log in

A novel gene carrier based on amino-modified silica nanoparticles

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Uniform-sized amino-modified silica nanoparticles have been prepared by the controlled synchronous hydrolysis of tetraethoxysilane and N-(β-amimoethyl)-γ-aminopropyltriethoxysilane in water nanodroplet of the wa-ter-in-oil microemulsion. These nanoparticles display positive charge potential at definited pH. This is due to the presence of amino groups on the surface of the nanoparticles. Nanoparticles-plasmid DNA complexes can easily form through electrostatical binding between the positive charges of the amino-modified silica nanoparticles and the negative charges of the plasmid DNA. The complexes can be also dissociated under alkaline pH or high ionic strength conditions. And enzymatic digestion of the plasmid DNA is almost inhibited by these nanoparticles complexes. A novel non-viral gene carrier based on the amino-modified silica nanoparticles is proposed under the combination of nanotechnology, biotechnology and gene engineering technology. The plasmid DNA can successfully cross various systemic barriers to COS-7 cells as well as mediate high expression of Green Fluorescence Protein (GFP) gene in cells by use of this novel gene carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boussif, O., Lezoualch, F., Zanta, M. A. et al., A versatile vector for gene and oligonucleotide transfer into cells in culture andin vivo: Polyethylenimine, Proc. Natl. Acad. Sci. USA, 1995, 92: 7297.

    Article  Google Scholar 

  2. Reszka, R., Zhu, J. H., Weber, F. et al., Liposome mediated transfer of marker and cytokine genes into rat and human Glioblastoma cellsin vitro andin vivo, J. Liposome Res., 1995, 5: 149.

    Article  Google Scholar 

  3. Singh, M., Briones, M., Ott, G. et al., Cationic microparticles: a potent delivery system for DNA vaccines, PNAS J, 2000, 97 (2): 811.

    Article  Google Scholar 

  4. Aderson, W. F., Humane gene therapy, Nature, 1998, 392 (6679): 25.

    Google Scholar 

  5. Antimisiaris, S. G., Jayaseker, P., Gregoriadis, G., Liposomes as vaccine carriers, J. Immun. Meth., 1993, 166: 271.

    Article  Google Scholar 

  6. Davis, S. S., Biomedical application of nanotechnology — implication for drug targeting and gene therapy, Trends in Biotech., 1997, 15: 217.

    Article  Google Scholar 

  7. Bender, A. R., Briesen, H. Y., Kreuter, J. et al., Efficiencey of nanoparticles as a carrier system for antiviral agents in humane immunodeficiency virus-infected human monocytes/macrophagesin vitro, Antimicrobial Agents & Chemotherapy, 1996, 40 (6): 1467.

    Google Scholar 

  8. Luo, D., Saltzman, W. M., Enhancement of transfection by physical concentration of DNA at the cell surface, Nat. Biotech., 2000, 18: 893.

    Article  Google Scholar 

  9. Junghans, M., Kreuter, J., Zimmer, A., Antisense delivery using protamine-oligonucleotide particles, Nucleic Acid Res., 2000, 28 (10): e45.

    Article  Google Scholar 

  10. Schwab, G., Chavany, C., Duroux, I. et al., Antisense oligonucleotide adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice, Proc. Natl. Acad. Sci. USA, 1994, 91: 10460.

    Article  Google Scholar 

  11. Jagur-Grodzinski, J., Biomedical application of functional polymers, Reactive & Functional Polymers, 1999, 39: 99.

    Article  Google Scholar 

  12. Zimmer, A., Antisense oligonucleotide delivery with polyhexylcyanoacrylate nanoparticles as carriers, A Companion to Methods in Enzymology, 1999, 18: 286.

    Article  Google Scholar 

  13. Erbacher, P., Zou, S., Bettinger, T. et al., Chitosan-based vector/ DNA complexes for gene delivery, biophysical characteristics and transfection ability. Pharm Res, 1998, 15 (9): 1332.

    Article  Google Scholar 

  14. Zhu, S. G., Lv, H. B., Xiang, Z. Z. et al., A novel no-viral gene carrier: poly-L-lysine silica nanoparticles, Chinese Science Bulletin, 2002, 47(8): 654.

    Article  Google Scholar 

  15. Kneuer, C., Sameti, M., Haltner, E. G. et al., Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA, Int. J. Pharm., 2000, 196 (2): 257.

    Article  Google Scholar 

  16. Sandhu, K. K., McIntosh, C. M., Simard, J. M. et al., Gold nanoparticles-mediated transfection of mammalian cells, Bioconjug. Chem., 2002, 13 (1): 3.

    Article  Google Scholar 

  17. He, Q., Mitchell, A. R., Johnson, S. L. et al., Calcium phosphate nanoparticles adjuvant, American Society for Microbiology, 2000, 7 (6): 899.

    Google Scholar 

  18. Kneuer, C., Sameti, M., Bakowsky, U. et al., 2A nonviral DNA delivery system based on surfaced modified silica-nanoparticles can efficiently transfect cellsin vitro, Bioconjug. Chem., 2000, 11 (6): 926.

    Article  Google Scholar 

  19. He, X. X., Wang, K. M., Tan, W. H. et al., A novel fluorescent label based on biological fluorescent nanoparticles and its application in cell recognition, Chinese Science Bulletin, 2001, 46(23): 1962.

    Article  Google Scholar 

  20. He, X. X., Wang, K. M., Tan, W. H. et al., Photostable luminescent nanoparticles as biological label for cell recognition of system lupus erythematosus (SLE) patients, J. Nanosci. Nanotech., 2002, 2(3): 317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemin Wang.

About this article

Cite this article

He, X., Wang, K., Tan, W. et al. A novel gene carrier based on amino-modified silica nanoparticles. Chin.Sci.Bull. 48, 223–228 (2003). https://doi.org/10.1007/BF03183287

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183287

Keywords

Navigation