Skip to main content
Log in

Pathophysiologische Bedeutung von Wachstumsfaktoren und neue Therapiekonzepte bei kardiovaskulären Erkrankungen

Pathophysiological role of growth factors and novel therapeutic approaches in cardiovascular disease

  • Übersicht
  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ Wachstumsfaktoren wie PDGF, FGF, VEGF und TGF-β spielen eine bedeutende Rolle in der Pathogenese kardiovaskulärer Erkrankungen. Neben ihrer pathophysiologischen Bedeutung im Rahmen von Atherogenese und Myokardhypertrophie sind Wachstumsfaktoren auch für benefizielle Effekte wie die Stimulation der Angiogenese und Kollateralbildung in ischämischem Gewebe verantwortlich.

□ Diese Übersicht beschreibt die Wirkungsmechanismen und Signaltransduktionskaskaden von Wachstumsfaktoren sowie neue therapeutische Konzepte. Diese Konzepte umfassen sowohl die selektive Antagonisierung einzelner Wachstumsfaktoren zur Suppression pathogener Stimuli als auch die Substitution von Wachstumsfaktoren zur Stimulation benefizieller Effekte.

Abstract

□ Peptide growth factors such as PDGF, FGF, VEGF, and TGF-β play a critical role in the pathogenesis of cardiovascular diseases. In addition to their pathophysiological role in atherosclerosis and myocardial remodeling, growth factors also promote beneficial effects such as stimulation of angiogenesis and formation of collateral vessels in ischemic tissue.

□ This review focuses on the mechanisms of action and signal relay cascades of peptide growth foctors, and summarizes novel therapeutic approaches in cardiovascular medicine. These approaches include both inhibition of growth factors in order to suppress pathogenic processes, and stimulation of growth factors to promote their beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abe J, Deguchi J, Matsumoto T, et al. Stimulated activation of platelet-derived growth factor receptor in vivo in balloon-injured arteries—a link between angiotensin II and intimal thickening. Circulation 1997; 96: 1906–13.

    PubMed  CAS  Google Scholar 

  2. Abe J, Deguchi J, Takuwa Y, et al. Tyrosine phophorylation of platelet-derived growth factor β receptors in coronary artery lesions: Implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris. Heart 1998; 79: 400–6.

    PubMed  CAS  Google Scholar 

  3. Agocha A, Lee HW, Eghbali-Webb M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac cardiac fibroblasts: Effects of transforming growth factor-β1, thyroid hormone, angiotensin II and basic fibrobl growth factor. J Mol Cell Cardiol 1997; 29: 2233–44.

    Article  PubMed  CAS  Google Scholar 

  4. Asada Y, Tsuneyoshi A, Marutsuka K, et al. Suramin inhibits intimal thickening following intimal injury in the rabbit aorta in vivo. Cirdiovasc Res 1994; 28: 1166–9.

    Article  CAS  Google Scholar 

  5. Asahara T, Bauters C, Pastore C, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 1995; 91: 2793–801.

    PubMed  CAS  Google Scholar 

  6. Asahara T, Bauters C, Zheng LP, et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995; 92: Suppl 9: II365–71.

    PubMed  CAS  Google Scholar 

  7. Baffour R, Berman J, Garb JL, et al. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg 1992; 16: 181–91.

    Article  PubMed  CAS  Google Scholar 

  8. Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994; 89: 2183–9.

    PubMed  CAS  Google Scholar 

  9. Banai S, Wolf Y, Golomb G, et al. PDGF-receptor tyrosine kinase blocker AG 1295 selectively attenuates smooth muscle cell growth in vitro and reduces neointimal formation after balloon angioplasty in swine. Circulation 1998; 97: 1960–9.

    PubMed  CAS  Google Scholar 

  10. Barrett TB, Benditt P. Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall. Proc Natl Acad Sci USA 1988; 85: 2810–4.

    Article  PubMed  CAS  Google Scholar 

  11. Battler A, Scheinowitz M, Bor A, et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993; 22: 2001–6.

    Article  PubMed  CAS  Google Scholar 

  12. Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97: 1114–23.

    PubMed  CAS  Google Scholar 

  13. Bauters C, Asahara T, Zheng LP, et al. Site-specific therapeutic angiogenesis after systemic adminisstration of vascular endothelial growth factor. J Vasc Surg 1995; 21: 314–25.

    Article  PubMed  CAS  Google Scholar 

  14. Behl C, Bogdahn U, Winkler J, et al. Autoinduction of platelet-derived growth factor (PDGF) A-chain mRNA expression in a human malignant melanoma cell line and growth inhibitory effects of PDGF-A-chain mRNA-specific antisense molecules. Biochem Biophys Res Commun 1993; 193: 744–51.

    Article  PubMed  CAS  Google Scholar 

  15. Boluyt MO, O’Neill L, Meredith AL, et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Circ Res 1994; 75: 23–32.

    PubMed  CAS  Google Scholar 

  16. Bönisch D, Weber AA, Wittpoth M, et al. Antimitogenic effects of trapidil in coronary artery smooth muscle cells by direct activation of protein kinase A. Mol Pharmacol 1998; 54: 241–8.

    PubMed  Google Scholar 

  17. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994; 331: 1286–92.

    Article  PubMed  CAS  Google Scholar 

  18. Bornfeldt KE, Raines EW, Graves LM, et al. Platelet-derived growth factor. Distinct signal transduction pathways associated with migration versus proliferation. Ann NY Acad Sci 1995; 766: 416–30.

    Article  PubMed  CAS  Google Scholar 

  19. Braddock PS, Hu D-E, Fan T-PD, et al. A structure-activity analysis of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by suramin and related polyanions. Br J Cancer 1993; 69: 890–8.

    Google Scholar 

  20. Brand T, Schneider MD. The TGFß superfamily in myocardium: Ligands, receptors, transduction, and function. J Mol Cell Cardiol 1995; 27: 5–18.

    Article  PubMed  CAS  Google Scholar 

  21. Brogi E, Wu T, Namiki A, et al. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 1994; 90: 649–52.

    PubMed  CAS  Google Scholar 

  22. Brown DM, Hong SP, Farrell CL, et al. Platelet-derived growth factor BB induces functional vascular anastomoses in vivo. Proc Natl Acad Sci USA 1995; 92: 5920–4.

    Article  PubMed  CAS  Google Scholar 

  23. Callow AD, Choi ET, Trachtenberg JD, et al. Vascular permeability factor accelerates endothelial regrowth following balloon angioplasty. Growth Factors 1994; 10: 223–8.

    Article  PubMed  CAS  Google Scholar 

  24. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–9.

    Article  PubMed  CAS  Google Scholar 

  25. Casscells W, Bazoberry F, Speir E, et al. Transforming growth factor-β1 in normal heart and in myocardial infarction. Ann NY Acad Sci 1990; 593: 148–60.

    Article  PubMed  CAS  Google Scholar 

  26. Cheng S-Y, Huang H-JS, Nagane M, et al. Suppression of glioblastoma and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 1996; 93: 8502–7.

    Article  PubMed  CAS  Google Scholar 

  27. Claesson-Welsh L. Platelet-derived growth factor signals. J Biol Chem 1994; 169: 32023–6.

    Google Scholar 

  28. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury: smooth muscle growth in the absence of endothelium. Lab Invest 1983; 49: 327–33.

    PubMed  CAS  Google Scholar 

  29. Dickson MC, Martin JS, Cousins FM, et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 1995; 121: 1845–54.

    PubMed  CAS  Google Scholar 

  30. Duan D-SR, Pazin MJ, Fretto LJ, et al. A functional soluble extracellular region of the platelet-derived growth factor (PDGF) β-receptor antagonizes PDGF-stimulated responses. J Biol Chem 1991; 266: 413–8.

    PubMed  CAS  Google Scholar 

  31. Edelman ER, Nugent MA, Smith LT, et al. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest 1992; 89: 465–73.

    Article  PubMed  CAS  Google Scholar 

  32. Ferns GAA, Raines EW, Sprugel KH, et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 1991; 253: 1129–32.

    Article  PubMed  CAS  Google Scholar 

  33. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 438–42.

    Article  Google Scholar 

  34. Folkman J. Angiogenic therapy for the human heart. Circulation 1998; 97: 628–9.

    PubMed  CAS  Google Scholar 

  35. Folkman J, D’Amore P. Blood vessel formation: What is its molecular basis? Cell 1996; 87: 1153–5.

    Article  PubMed  CAS  Google Scholar 

  36. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267: 10931–4.

    PubMed  CAS  Google Scholar 

  37. Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70.

    Article  PubMed  CAS  Google Scholar 

  38. Fox JC, Shanley JR. Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem 1996; 271: 12578–84.

    Article  PubMed  CAS  Google Scholar 

  39. Gagliardi A, Hadd H, Collins DC. Inhibition of angiogenesis by suramin. Cancer Res 1992; 52: 5073–5.

    PubMed  CAS  Google Scholar 

  40. Golden MA, Tina Au YP, Kirkman TR, et al. Plateletderived growth factor activity and mRNA expression in healing vascular grafts in baboons. J Clin Invest 1991; 87: 406–14.

    Article  PubMed  CAS  Google Scholar 

  41. Habib AA, Högnason T, Ren J, et al. The epidermal growth factor receptor associates with and recruites phosphatidylinositol 3-kinase to the platelet-derived growth factor β receptor. J Biol Chem 1997; 273: 6885–91.

    Article  Google Scholar 

  42. Harada K, Friedman M, Lopez JJ, et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 1996; 270: H1791–802.

    PubMed  CAS  Google Scholar 

  43. Harada K, Grossman W, Friedman M, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 1994; 94: 623–30.

    Article  PubMed  CAS  Google Scholar 

  44. Harker LA, Ross R, Slichter SJ, et al. Homocystine-induced arteriosclerosis: The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976; 58: 731–41.

    Article  PubMed  CAS  Google Scholar 

  45. Heldin C-H. Structural and functional studies on platelet-derived growth factor. EMBO J 1992; 11: 4251–9.

    PubMed  CAS  Google Scholar 

  46. Horrigan MCG, Maclsaac AI, Nicolini FA, et al. Reduction of myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 1996; 94: 1927–33.

    PubMed  CAS  Google Scholar 

  47. Hosang M. Suramin binds to platelet-derived growth factor and inhibits its biological activity. J Cell Biochem 1985; 29: 265–73.

    Article  PubMed  CAS  Google Scholar 

  48. Ishibashi Y, Urabe Y, Tsutsui H, et al. Negative inotropic effect of basic fibroblast growth factor on adult rat cardiac myocyte. Circulation 1997; 96: 2501–4.

    PubMed  CAS  Google Scholar 

  49. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of ph VEGF165 in patients with ischaemic limb. Lancet 1996; 348: 370–4.

    Article  PubMed  CAS  Google Scholar 

  50. Jawien A, Bowen-Pope DF, Lindner V, et al. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest 1992; 89: 507–11.

    Article  PubMed  CAS  Google Scholar 

  51. Kanzaki T, Tamura K, Takahashi K, et al. In vivo effect of TGF-β1: enhanced intimal thickening by administration of TGF-β1 in rabbit arteries injured with a balloon catheter. Arterioscler. Thromb Vasc Biol 1995; 15: 1951–7.

    CAS  Google Scholar 

  52. Kazlauskas A. Receptor tyrosine kinases and their targets. Curr Opin Genet Developm 1994; 4: 5–14.

    Article  CAS  Google Scholar 

  53. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993; 90: 10705–9.

    Article  PubMed  CAS  Google Scholar 

  54. Koh GY, Kim S-J, Klug MG, et al. Targeted expression of transforming growth factor-β1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest 1995; 95: 114–21.

    Article  PubMed  CAS  Google Scholar 

  55. Komuro IYK, Hoh E, Takaku F, et al. Mechanism of cardiac hypertrophy and injury: possible role of protein kinase C activation. Jpn Circ J 1991; 55: 1149–57.

    PubMed  CAS  Google Scholar 

  56. Korpelainen E, Alitalo K. Signaling angiogenesis and lymphangiogenesis. Curr Opin Cell Biol 1998; 10: 159–64.

    Article  PubMed  CAS  Google Scholar 

  57. Landgren E, Eriksson A, Wennström S, et al. Induction of fibroblast growth factor receptor-1 mRNA and protein by platelet-derived growth factor BB. Exp Cell Res 1996; 223: 405–11.

    Article  PubMed  CAS  Google Scholar 

  58. Lazarous DF, Scheinowitz M, Shou M, et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 1995; 91: 145–53.

    PubMed  CAS  Google Scholar 

  59. Lefkovits J, Topol EJ. Pharmacological approaches for the prevention of restenosis after percutaneous coronary intervention. Prog Cardiovasc Dis 1997; 40: 141–58.

    Article  PubMed  CAS  Google Scholar 

  60. Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science 1995; 267: 1782–8.

    Article  PubMed  CAS  Google Scholar 

  61. Li JM, Brooks G. Differential protein expression and subcellular distribution of TGFbeta1, beta2 and beta3 in cardiomyocytes during pressure overload-induced hypertrophy. J Mol Cell Cardiol 1997; 29: 2213–24.

    Article  PubMed  CAS  Google Scholar 

  62. Li RK, Mickle DA, Weisel RD, et al. Overexpression of transforming growth factor-beta 1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 1997; 96: 874–81.

    PubMed  CAS  Google Scholar 

  63. Lindahl P, Johansson BR, Leveen P, et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997; 277: 242–5.

    Article  PubMed  CAS  Google Scholar 

  64. Linseman DA, Benjamin CW, Jones DA. Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J Biol Chem 1995; 270: 12563–8.

    Article  PubMed  CAS  Google Scholar 

  65. Liu M, Liu J, Buch S, et al. Antisense oligonucleotides for PDGF-B and its receptor inhibit mechanical strain-induced fetal lung cell growth. Am J Physiol 1995; 269: L178–84.

    PubMed  CAS  Google Scholar 

  66. Majesky MW, Reidy MA, Bowen-Pope DF, et al. PDGF ligand and receptor gene expression during repair of arterial injury. J Cell Biol 1990; 111: 2149–58.

    Article  PubMed  CAS  Google Scholar 

  67. Majesky MW, Lindner V, Twardzik DR, et al. Production of transforming growth factor beta 1 during repair of arterial injury. J Clin Invest 1991; 88: 904–10.

    Article  PubMed  CAS  Google Scholar 

  68. Maresta A, Balducelli M, Cantini L, et al. STARC Study Group: Trapidil (triazolpyrimidine), a platelet-derived growth factor antagonist, reduces restenosis after percutaneous transluminal coronary angioplasty. Results of the randomized, double-blind STARC study. Studio trapidil versus aspirin nella restenosi coronarica. Circulation 1994; 90: 2710–5.

    PubMed  CAS  Google Scholar 

  69. Martins RN, Chleboun JO, Sellers P, et al. The role of PDGF-BB on the development of the collateral circulation after acute arterial occlusion. Growth Factors 1994; 10: 299–306.

    Article  PubMed  CAS  Google Scholar 

  70. Massague J. TGFß signaling: Receptors, transducers, and Mad proteins. Cell 1996; 85: 947–50.

    Article  PubMed  CAS  Google Scholar 

  71. Millauer B, Shawver LK, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–9.

    Article  PubMed  CAS  Google Scholar 

  72. Miyazono K. Signaling through proteine serine/threonine kinase receptors. In: Heldin C-H, Purton M, eds. Signal transduction. London: Chapman & Hall, 1996: 65–78.

    Google Scholar 

  73. Nabel EG, Shum L, Pompili VJ, et al. Direct transfer of transforming growth factor β1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci USA 1993; 90: 10759–63.

    Article  PubMed  CAS  Google Scholar 

  74. Nabel EG, Yang Z, Liptay S, et al. Recombinant platelet-derived growth factor B gene expression in porcine arteries induces intimal hyperplasia in vivo. J Clin Invest 1993; 91: 1822–9.

    Article  PubMed  CAS  Google Scholar 

  75. Nabel EG, Yang Z-Y, Plautz G, et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature 1993; 362: 844–6.

    Article  PubMed  CAS  Google Scholar 

  76. O’Brian ER, Garvin MR, Dev R, et al. Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 1994; 145: 883–94.

    Google Scholar 

  77. Ohnishi H, Yamaguchi K, Shimada S, et al. A new approach to the treatment of atherosclerosis and trapidil as an antagonist to platelet-derived growth factor. Life Sci 1981; 28: 1641–6.

    Article  PubMed  CAS  Google Scholar 

  78. Okamoto S, Inden M, Setsuda M, et al. Effects of trapidil (triazolopyrimidine), a platelet-derived growth factor antagonist, in preventing restenosis after percutaneous transluminal coronary angioplasty. Am Heart J 1992; 123: 1439–44.

    Article  PubMed  CAS  Google Scholar 

  79. Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 1996; 179: 297–302.

    Article  PubMed  CAS  Google Scholar 

  80. Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990; 85: 507–14.

    Article  PubMed  CAS  Google Scholar 

  81. Pearlman JD, Hibbert MG, Chuang ML, et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1995; 1: 1085–9.

    Article  PubMed  CAS  Google Scholar 

  82. Pepper MS, Ferrara N, Orci L, et al. Potentsynergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 1992; 189: 824–31.

    Article  PubMed  CAS  Google Scholar 

  83. Pfeffer MA. Left ventricular remodeling after acute myocardial infarction. Annu Rev Med 1995; 46: 455–66.

    Article  PubMed  CAS  Google Scholar 

  84. Raines EW, Ross R. Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. Br Heart J 1993; 69: Suppl: S30–7.

    Article  Google Scholar 

  85. Reidy MA, Schwartz SM. Endothelial regeneration: time course of intimal changes after small defined arterial injury to rat aortic endothelium. Lab Invest 1981; 44: 301–8.

    PubMed  CAS  Google Scholar 

  86. Reidy MA. A reassessment of endothelial injury and arterial lesion formation. Lab Invest 1985; 53: 513–20.

    PubMed  CAS  Google Scholar 

  87. Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671–4.

    Article  PubMed  CAS  Google Scholar 

  88. Risau W, Drexler H, Mironov V, et al. Platelet-derived growth factor is angiogenic in vivo. Growth Factors 1992; 7: 261–6.

    Article  PubMed  CAS  Google Scholar 

  89. Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-beta. Growth Factors 1993; 8: 1–9.

    Article  PubMed  CAS  Google Scholar 

  90. Ross R, Masuda J, Raines EW, et al. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science 1990; 248: 1009–12.

    Article  PubMed  CAS  Google Scholar 

  91. Ross R. The pathogenesis of atherosclerosis. A perspective for the 1990’s. Nature 1993; 362: 801–9.

    Article  PubMed  CAS  Google Scholar 

  92. Rosenkranz S, Kazlauskas A. Evidence for distinct biological properties and signaling machineries of the PDGF receptor α and β subtypes. Growth Factors (in press).

  93. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70–4.

    Article  PubMed  CAS  Google Scholar 

  94. Schaper W, Schaper J eds. Collateral circulation: Heart, brain, kidney, limbs. Boston-Dordrecht-London: Kluwer, 1993.

    Google Scholar 

  95. Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996; 79: 911–9.

    PubMed  CAS  Google Scholar 

  96. Schlüter KD, Zhou XJ, Piper HM. Induction of hypertrophic responsiveness to isoproterenol by TGF-β in adult rat cardiomyocytes. Am J Physiol 1995; 169: C1311–6.

    Google Scholar 

  97. Schumacher B, Pecher P, von Specht BU, et al. Induction of neoangiogenesis inischemic myocardium by human growth factors. First clinical results of a new treatment of coronary heart disease. Circulation 1998; 97: 645–50.

    PubMed  CAS  Google Scholar 

  98. Serruys PW, Pieper M, Bos AA vd, et al. TRAPIST study: A randomized double blind study to evaluate the efficacy od trapidil on restenosis after successful elective coronary stenting. Circulation 1998; 98: Suppl 1: 1–362. abstract.

    Google Scholar 

  99. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–5.

    Article  PubMed  CAS  Google Scholar 

  100. Simm A, Nestler M, Hoppe V. PDGF-AA, a potent mitogen for cardiac fibroblasts from adult rats. J Mol Cell Cardiol 1997; 29: 357–68.

    Article  PubMed  CAS  Google Scholar 

  101. Sioussat TM, Dvorak HF, Brock TA, et al. Inhibition of vascular permeability factor (vascular endothelial growth factor) with antipeptide antibodies. Arch Biochem Biophys 1993; 301: 15–20.

    Article  PubMed  CAS  Google Scholar 

  102. Sirois MG, Simons M, Edelman ER. Antisense oligonucleotide inhibition of PDGF-β receptor subunit expression directs suppression of intimal thickening. Circulation 1997; 95: 669–76.

    PubMed  CAS  Google Scholar 

  103. Stavri GT, Hong Y, Zachary IC, et al. Hypoxia and platelet-derived growth factor-BB synergistically upregulate the expression of vascular endothelial growth factor in vascular smooth muscle cells. FEBS Lett 1995; 358: 311–5.

    Article  PubMed  CAS  Google Scholar 

  104. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1997; 87: 1161–9.

    Google Scholar 

  105. Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis: a single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic limb model. J Clin Invest 1994; 93: 662–70.

    Article  PubMed  CAS  Google Scholar 

  106. Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or chronic hypoxia. J Clin Invest 1995; 95: 1798–807.

    Article  PubMed  CAS  Google Scholar 

  107. Ueno H, Colbert H, Escobedo JA, et al. Inhibition of PDGF β receptor signal transduction by coexpression of a truncated receptor. Science 1991; 252: 844–8.

    Article  PubMed  CAS  Google Scholar 

  108. Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994; 35: H1588–95.

    Google Scholar 

  109. Vassbotn FS, Östman A, Siegbahn A, et al. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGFα- and β-receptor, signals in cells expressing both receptor types. J Biol Chem 1992; 267: 15635–41.

    PubMed  CAS  Google Scholar 

  110. Villarreal FK, Dillmann WH. Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin and collagen. Am J Physiol 1992; 262: H1861–6.

    PubMed  CAS  Google Scholar 

  111. Yamamoto H, Ueno H, Ooshima A, et al. Adenovirusmediated transfer of a truncated transforming growth factor-β (TGF-β) type II receptor completely and specifically abolishes diverse signaling by TGF-β in vascular wall cells in primary culture. J Biol Chem 1996; 271: 16253–9.

    Article  PubMed  CAS  Google Scholar 

  112. Yang HT, Deschenes MR, Ogilvie RW, et al. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ Res 1996; 79: 62–9.

    PubMed  CAS  Google Scholar 

  113. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992; 257: 1401–3.

    Article  PubMed  CAS  Google Scholar 

  114. Waltenberger J, Mayr U, Frank H, et al. Suramin is a potent inhibitor of vascular endothelial growth factor: a contribution to the molecular basis of its angiogenic action. J Mol Cell Cardiol 1996; 28: 1523–9.

    Article  PubMed  CAS  Google Scholar 

  115. Waltenberger J, Mayr U, Pentz S, et al. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 1996; 94: 1647–54.

    PubMed  CAS  Google Scholar 

  116. Waltenberger J. Modulation of growth factor action. Implications for the treatment of cardiovascular disease. Circulation 1997; 96: 4083–94.

    PubMed  CAS  Google Scholar 

  117. Wilcox JN, Smith KM, Williams LT, et al. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest 1988; 82: 1134–43.

    Article  PubMed  CAS  Google Scholar 

  118. Wuensch M, Sharma HS, Markert T, et al. In situ localization of transforming growth factor beta 1 in porcine heart: Enhanced expression after chronic coronary artery occlusion. J Mol Cell Cardiol 1991; 23: 1051–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Rosenkranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenkranz, S., Böhm, M. & Kazlauskas, A. Pathophysiologische Bedeutung von Wachstumsfaktoren und neue Therapiekonzepte bei kardiovaskulären Erkrankungen. Med Klin 94, 496–504 (1999). https://doi.org/10.1007/BF03044941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044941

Schlüsselwörter

Key Words

Navigation