Skip to main content
Log in

Ambient temperature signaling in plants: An emerging field in the regulation of flowering time

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants show remarkable developmental plasticity to survive in a continually changing environment. One example is their capability to adjust flowering time in response to environmental changes. Ambient growth temperature, which is strongly affected by global temperature changes, has a profound effect on flowering time. However, those effects have been largely ignored in research. Recent molecular genetic studies ofArabidopsis as a model system have implicated several genes, and have identified a molecular mechanism underlying the responses of plants to changes in ambient temperature. Here, we describe recent discoveries related to ambient temperature signaling and the control of flowering time inArabidopsis. We also discuss current perspectives on how plants sense and respond to such changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8: 343–351

    Article  PubMed  CAS  Google Scholar 

  • Atkinson LJ, Hellicar MA, Fitter AH, Atkin OK (2007) Impact of temperature on the relationship between respiration and nitrogen concentration in roots: An analysis of scaling relationships, Q10 values and thermal acclimation ratios. New Phytol 173: 110–120

    Article  PubMed  CAS  Google Scholar 

  • Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez-Zapater JM(2004) Regulation of flowering time by FVE, a retino-blastoma-associated protein. Nat Genet 36: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction ofArabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2: e106

    Article  Google Scholar 

  • Blázquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time inArabidopsis thaliana. Nat Genet 33: 168–171

    Article  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: Enabling, promoting, and resetting. Plant Cell 16 Suppl: S18–31

    Article  Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176: 375–389

    Article  PubMed  CAS  Google Scholar 

  • Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423: 881–885

    Article  PubMed  CAS  Google Scholar 

  • Clarke JH, Dean C (1994) Mapping FRI, a locus controlling flowering time and vernalization response inArabidopsis thaliana. Mol Gen Genet 242: 81–89

    PubMed  CAS  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA 103: 13740–13744

    Article  PubMed  CAS  Google Scholar 

  • de Folter S, Immink RG, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of theArabidopsis MADS Box transcription factors. Plant Cell 17: 1424–1433

    Article  PubMed  Google Scholar 

  • Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10: 520–527

    Article  PubMed  CAS  Google Scholar 

  • Edwards KD, Lynn JR, Gyula R Nagy F, Millar AJ (2005) Natural allelic variation in the temperature-compensation mechanisms of theArabidopsis thaliana circadian clock. Genetics 170: 387–400

    Article  PubMed  CAS  Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ (2006)FLOWERING LOCUS C mediates natural variation in the high-temperature response of theArabidopsis circadian clock. Plant Cell 18: 639–650

    Article  PubMed  CAS  Google Scholar 

  • El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Wagemaker C, Weller JL, Koornneef M (2003) The role of cryptochrome 2 in flowering inArabidopsis. Plant Physiol 133: 1504–1516

    Article  Google Scholar 

  • Endo M, Mochizuki N, Suzuki T, Nagatani A (2007) CRYPTOCHROME2 in vascular bundles regulates flowering inArabidopsis. Plant Cell 19: 84–93

    Article  PubMed  CAS  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) TheVERNALIZATION 2 gene mediates the epigenetic regulation of vernalization inArabidopsis. Cell 107: 525–535

    Article  PubMed  CAS  Google Scholar 

  • Gielen B, Naudts K, D’Haese D, Lemmens CM, De Boeck HJ, Biebaut E, Serneels R, Valcke R, Nijs I, Ceulemans R (2007) Effects of climate warming and species richness on photochemistry of grasslands. Physiol Plant 131: 251–262

    PubMed  CAS  Google Scholar 

  • Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in theArabidopsis circadian clock. Plant Cell 18:1177–1187

    Article  PubMed  CAS  Google Scholar 

  • Grant RF, Nalder IA (2000) Climate change effects on net carbon exchange of a boreal aspen-hazelnut forest: Estimates from the ecosystem model ecosys. Global Change Biol 6: 183–200

    Article  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187–223

    CAS  Google Scholar 

  • Halliday KJ, Whitelam GC (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol 131: 1913–1920

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integratorFT. Plant J 33: 875–885

    Article  PubMed  CAS  Google Scholar 

  • Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning ofSVP: A negative regulator of the floral transition inArabidopsis. Plant J 21: 351–360

    Article  PubMed  CAS  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg R Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CP, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, et al. (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Heggie L, Halliday KJ (2005) The highs and lows of plant life: Temperature and light interactions in development. Intl J Dev Biol 49: 675–687

    Article  CAS  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) TheArabidopsis FLC protein interacts directlyin vivo with SOC1 andFT chromatin and is part of a high-molecular-weight protein complex. Plant J 46: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Henry HA, Cleland EE, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473

    Article  PubMed  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57: 291–302

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis ofFRIGIDA, a major determinant of natural variation inArabidopsis flowering time. Science 290: 344–347

    Article  PubMed  CAS  Google Scholar 

  • Johansson J, Mandin R Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes inListeria monocytogenes. Cell 110: 551–561

    Article  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducerFT. Science 286: 1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Katayama S, Matsushita O, Tamai E, Miyata S, Okabe A (2001) Phased A-tracts bind to the alpha subunit of RNA polymerase with increased affinity at low temperature. FEBS Lett 509: 235–238

    Article  PubMed  CAS  Google Scholar 

  • Kellomäki S, Väisänen H, Kolström T (1997) Model computations on the effects of elevating temperature and atmospheric CO2 on the regeneration of Scots pine at the timber line in Finland. Climat Change 37: 683–708

    Article  Google Scholar 

  • Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time throughFVE inArabidopsis thaliana. Nat Genet 36: 167–171

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling inArabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 489–503

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways inArabidopsis. Genes Dev 14: 2366–2376

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Amasino RM (1995) Effect of vernalization, photoperiod, and light quality on the flowering phenotype ofArabidopsis plants containing theFRIGIDA gene. Plant Physiol 108: 157–162

    PubMed  CAS  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role ofSVP in the control of flowering time by ambient temperature inArabidopsis. Genes Dev 21: 397–402

    Article  PubMed  CAS  Google Scholar 

  • Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M, Weigel D (2005) Diversity of flowering responses in wildArabidopsis thaliana strains. PLoS Genet 1: 109–118

    Article  PubMed  CAS  Google Scholar 

  • Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles ofArabidopsis VRN1 in vernalization and flowering time control. Science 297: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Gilmour SJ, Thomashow MF, Van Nocker S (2002) Cold signalling associated with vernalization inArabidopsis thaliana does not involve CBF1 or abscisic acid. Physiol Plant 114: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Garceau NY, Loros JJ, Dunlap JC (1997) Thermally regulated translational control of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell 89: 477–486

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Woodward FI, Company of Biologists, Society for Experimental Biology (Great Britain) (1988) Plants and Temperature. Cambridge [England]: Company of Biologists, Ltd. Dept. of Zoology, University of Cambridge

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997)FCA, a gene controlling flowering time inArabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737–745

    Article  PubMed  CAS  Google Scholar 

  • McMurtrie RE, Wang YP (1993) Mathematical models of the photosynthetic response of tree stands to rising CO2 concentration and temperatures. Plant, Cell Environ 16: 1–13

    Article  CAS  Google Scholar 

  • Medlyn BE, McMurtrie RE, Dewar RC, Jeffreys M (2000) Soil processes dominate long-term response of net primary productivity of forests to increased temperature and atmospheric CO2 concentration. Can J For Res 30: 873–888

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999)FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949–956

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2004) Integration of flowering signals in winter-annualArabidopsis. Plant Physiol 137: 149–156

    Article  PubMed  Google Scholar 

  • Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions ofArabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126: 2073–2082

    PubMed  CAS  Google Scholar 

  • Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F (1997) Cloning and molecular analysis of theArabidopsis gene Terminal Flower 1. Mol Gen Genet 254: 186–194

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Shingai R (2006) Evolution of thermoTRP ion channel homologs in vertebrates. Physiol Genom 27: 219–230

    Article  CAS  Google Scholar 

  • Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ (2006)FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biol 6: 10

    Article  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive developmentof Arabidopsis. Science 288: 1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Wigge PA (2005) Ambient temperature perception in plants. Curr Opin Plant Biol 8: 483–486

    Article  PubMed  Google Scholar 

  • Sawyer LA, Hennessy JM, Peixoto AA, Rosato E, Parkinson H Costa R, Kyriacou CP (1997) Natural variation in aDrosophila clock gene and temperature compensation. Science 278: 2117–2120

    Article  PubMed  CAS  Google Scholar 

  • Scortecci KC, Michaels SD, Amasino RM (2001) Identification of a MADS-box gene,FLOWERING LOCUS M, that represses flowering. Plant J 26: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling inArabidopsis. Genes Dev 20: 898–912

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27: 1048–1059

    Article  PubMed  CAS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) TheFLF MADS box gene: A repressor of flowering inArabidopsis regulated by vernalization and methylation. Plant Cell 11: 445–458

    Article  PubMed  CAS  Google Scholar 

  • Sohn EJ, Rojas-Pierce M, Pan S, Carter C, Serrano-Mislata A, Madueno F, Rojo E, Surpin M, Raikhel NV (2007) The shoot meristem identity geneTFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc Natl Acad Sci USA 104: 18801–18806

    Article  PubMed  CAS  Google Scholar 

  • Steffen KL, Wheeler RM, Arora R, Palta JP, Tibbitts TW (1995) Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures. Physiol Plant 94: 51–56

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization inArabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2005) Remembering winter: Toward a molecular understanding of vernalization. Annu Rev Plant Biol 56: 491–508

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops JM (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441: 629–632

    Article  PubMed  CAS  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of Florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59: 573–594

    Article  PubMed  CAS  Google Scholar 

  • Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T (2003) Opposite thermosensor in fruitfly and mouse. Nature 423: 822–823

    Article  PubMed  CAS  Google Scholar 

  • Westerman JM, Lawrence MJ (1970) Genotype-environment interaction and developmental regulation inArabidopsis thaliana inbred lines. Heredity 25: 609–627

    Article  Google Scholar 

  • Wilson IW, Kennedy GC, Peacock JW, Dennis ES (2005) Microarray analysis reveals vegetative molecular phenotypes ofArabidopsis flowering-time mutants. Plant Cell Physiol 46: 1190–1201

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005)TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly withFT. Plant Cell Physiol 46: 1175–1189

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza-Castells J, Sanchez-Gomez D, Valladares F, Hurry V, Atkin OK (2007) Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant Cell Environ 30: 820–833

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hoon Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Lee, J.S. & Ahn, J.H. Ambient temperature signaling in plants: An emerging field in the regulation of flowering time. J. Plant Biol. 51, 321–326 (2008). https://doi.org/10.1007/BF03036133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036133

Keywords

Navigation