Skip to main content
Log in

A new method of immobilizing enzymes by radiopolymerization under low temperature

  • Published:
Journal of Solid Phase Biochemistry Aims and scope Submit manuscript

Abstract

A new method of immobilizing enzymes by ionizing radiation is described. The mixed aqueous solution of enzyme and polymerizing reagents were quickly frozen at about -70°C then were irradiated with 200 to 500 Krad by60Co γ ray. Irradiation was conducted aerobically under the low temperature. The enzyme was entraped in the resulting polymer. As the polymerizing reagent some water soluble polymers having vinyl bonds were also applicable. By this method an immobilized enzyme was prepared in bead, membrane, bag, or tube form having high enzymic activity. When the bead form was to be prepared, the mixture of enzyme and reagents were injected into precooled solvent such as n-hexane, toluene, or petroleum ether. the size of the bead was controlled freely from 10 μm to 1 cm in diameter. The surface of the bead had numerous small holes and the cross section of the bead showed a spongy structure. some acrylates were suitable for the immobilization of enzymes which required the corresponding metal ion as the essential substance. Microorganisms and multienzymes will be immobilized by this technique. This method is inexpensive, quick, simple, and reliable. Immobilized microbial cells can be sterilized by γ irradiation. Invertase was immobilized and the application test was conducted in an enzyme column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernferd, P., andWan, J. (1963) Science 142: 678.

    Article  Google Scholar 

  2. Hicks, G. P., andUpdike, S. J. (1966) Anal. Chem. 38: 726.

    Article  CAS  Google Scholar 

  3. Mosbach, K., andMosbach, R. (1966) Acta Chemica. Scandinavica 20: 2807.

    Article  CAS  Google Scholar 

  4. Guilbault, G. G., andShu, E. R. (1971) Anal. Chem. Acta. 56: 333.

    Article  CAS  Google Scholar 

  5. Bernferd, P., Beiber, R. E., andMacDonnell, P. C. (1968) Arch. biochem. biophys. 127: 779.

    Article  Google Scholar 

  6. O’Driscoll, K. F., Izu, M., andKorus, R. (1972) Biotechnol. Bioeng. 14: 847.

    Article  CAS  Google Scholar 

  7. Karube, I., Mizuguchi, J., andSuzuki, S. (1971) Kogyo Kagaku Zasshi 74: 971.

    CAS  Google Scholar 

  8. Guilbault, G. G., andDas, J. (1970) Anal. Biochem. 33: 341.

    Article  CAS  Google Scholar 

  9. Pennington, S. N., Brown, H. D., Patel, A. B., andKnowles, C. O. (1968) Biochem. Biophys. Acta. 167: 478.

    Google Scholar 

  10. Pennington, S. N., Brown, H. D., Patel, A. B., andChattopadhyay, S. K. (1968) J. Biomed. Mater. Res. 2: 443.

    Article  CAS  Google Scholar 

  11. Dickey, F. H. (1955) J. Phys. Chem. 59: 695.

    Article  CAS  Google Scholar 

  12. Guang-zhen, M., Lian-wan, Y., Xiu-FEN, K., andYu-ying, Z. (1978) Acta Microbiologia Sinica. 18: 39.

    Google Scholar 

  13. Dobo, J. (1970) Acta. chem. Acad. Sci. Hung. 63: 453.

    CAS  Google Scholar 

  14. Kawashima, K., and Umeda, K. (1973) Abstract at Annual Congress of Agricultural Chemical Society of Japan. 136.

  15. Maeda, H.,Suzuki, H., andYamauchi, A. (1973) Abstract at Annual Congress of Agricultural Chemical Society of Japan, 137.

  16. Yoshida, M.,Kumakura, M., andKaetsu, I. (1975) JAERI-M Report 6183, Japan Atomic Energy Research Institute.

  17. Maeda, H., Suzuki, H., andYamauchi, A. (1973) Biotechnol. Bioeng. 15: 607.

    Article  CAS  Google Scholar 

  18. Maeda, H., andSuzuki, H. (1974) Biotechnol. Bioeng. 16: 1517.

    Article  CAS  Google Scholar 

  19. Kawashima, K., andUmeda, K. (1974) Biotechnol. Bioeng. 16: 609.

    Article  CAS  Google Scholar 

  20. Kawashima, K., andUmeda, K. (1975) Biotechnol. Bioeng. 17: 599.

    Article  CAS  Google Scholar 

  21. Kawashima, K., andUmeda, K. (1976) Agr. Biol. Chem. 40: 1151.

    CAS  Google Scholar 

  22. Nilsson, H., Mosbach, R., andMosbach, K. (1972) Biochem. Biophys. Acta. 268:253.

    CAS  Google Scholar 

  23. Kawashima, K., andUmeda, K. (1976) Agr. Biol. Chem. 40: 1143.

    CAS  Google Scholar 

  24. Kawashima, K., Suzuki, T., andUmeda, K. (1976) Nippon Shokuhin Kogyo Gakkaishi. 23: 588.

    Google Scholar 

  25. Kawashima, K., andUmeda, K. (1976) Nippon Shokuhin Kogya Gakkaishi 23: 316.

    Google Scholar 

  26. Mason, R. D., andWeetall, H. H. (1972) Biotechnol. Bioeng. 14: 637.

    Article  CAS  Google Scholar 

  27. Maeda, H., andSuzuki, H. (1973) Biotechnol. Bioeng. 15: 403.

    Article  CAS  Google Scholar 

  28. Usami, S., Noda, J., andGoto, K. (1971) J. Ferment. Technol. 49: 598.

    CAS  Google Scholar 

  29. Kawashima, K., andUmeda, K. (1976) Nippon Shokuhin Kogyo Gakkaishi. 23: 206.

    Google Scholar 

  30. Kawashima, K. (1977) Nippon Shokuhin Kogyo Gakkaishi 23: 206.

    Google Scholar 

  31. Kawashima, K., andUmeda, K. (1976) Nippon Shokuhin Kogyo Gakkaishi 23: 211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawashima, K. A new method of immobilizing enzymes by radiopolymerization under low temperature. Journal of Solid Phase Biochemistry 3, 199–213 (1978). https://doi.org/10.1007/BF02991847

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02991847

Keywords

Navigation