Skip to main content
Log in

Copper accumulation in the soluble and particulate fractions of renal cortex in the streptozotocin-diabetic rat

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The accumulation and subcellular distribution of copper in the kidney of streptozotocin-diabetic rats were investigated. Male Sprague-Dawley rats received streptozotocin (50 mg/kg body wt on two consecutive days) intraperitoneally and were fed either commercial or purified diet. The concentrations of copper, zinc, iron, and manganese present in intact kidney, renal cortex, and renal medulla were compared at various times. Chow-fed diabetic rats had a renal copper concentration 2.6 times greater than age-matched controls after 2 weeks. The concentration of zinc was only 30% higher in diabetic kidney than in control tissue, whereas the iron and manganese concentrations were similar for both groups. The additional complement of renal copper was localized entirely in the cortex and was significantly reduced by oral treatment with penicillamine, a copper chelating agent. When diabetic rats were fed purified diet (15-20 ppm Cu), the quantity of copper accumulated in the renal cortex increased from 2.3 to 8.7-fold higher than in control tissue from 1 to 4 weeks, respectively, after injection with streptozotocin. Copper levels in. both the soluble and particulate (165, 000g pellet) fractions of diabetic renal cortex were similarly increased at each time. Gel filtration Chromatographic analysis of the cytosol showed that all of the copper accumulated in the soluble fraction was associated with metallothionein. The distribution of excess copper in the particulate fraction was determined by differential centrifugation. The additional quantity of metal was localized in the crude nuclear fraction of renal cortex in the diabetic rat. Further analysis revealed that the lysosomal fraction from 3-weeek diabetic rats had a copper level 16-fold higher than in the controls. The possibility that accumulation of excessive levels of copper in the streptozotocin-diabetic kidney may contribute to the development of diabetic nephropathy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Brown, G. A. Andres, T. H. Hostetter, S. M. Mauer, R. Price, and M. A. Venkatachalam,Diabetes 31 (Suppl. 1), 71 (1982).

    PubMed  CAS  Google Scholar 

  2. S. M. Mauer, M. W. Steffes, and D. M. Brown,Amer. J. Med. 70, 603 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. N. G. Westberg,Acta Endocrinol. 94 (Suppl. 238), 85 (1980).

    Google Scholar 

  4. M. L. Failla and R. A. Kiser,J. Nutr. 111, 1900 (1981).

    PubMed  CAS  Google Scholar 

  5. M. L. Failla and R. A. Kiser,Amer. J. Physiol. 244, El15 (1983).

    Google Scholar 

  6. N. E. Craft and M. L. Failla,Amer. J. Physiol. 244, E122 (1983).

    PubMed  CAS  Google Scholar 

  7. H. C. Gonick,Mineral Electrolyte Metab. 1, 107 (1978).

    CAS  Google Scholar 

  8. J. L. Bailey,Techniques in Protein Chemistry. New York, Elsevier, (1962), pp. 294.

    Google Scholar 

  9. S. Fleisher and M. Kervina,Methods Enzymol. 31, 6 (1974).

    Article  Google Scholar 

  10. S. Shibko and A. L. Tappel,Biochem. J. 95, 731 (1965).

    PubMed  CAS  Google Scholar 

  11. H. D. Tisdale,Methods Enzymol. 10, 213 (1967).

    Article  CAS  Google Scholar 

  12. B. Mackler,Methods Enzymol. 10, 551 (1967).

    Article  CAS  Google Scholar 

  13. B. H. J. Hofstee,Arch. Biochem. Biophys. 51, 139 (1954).

    Article  PubMed  CAS  Google Scholar 

  14. K. Burton,Biochem. J. 62, 315 (1956).

    PubMed  CAS  Google Scholar 

  15. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  16. R. G. D. Steele and J. H. Torrie,Principles and Procedures of Statistics. New York, McGraw-Hill, 1960.

    Google Scholar 

  17. M. Amherdt, V. Harris, A. E. Renold, L. Orci, and R. H. Unger,J. Clin. Invest. 54, 188 (1974).

    Article  PubMed  CAS  Google Scholar 

  18. I. Sternlieb and S. Goldfischer, inLysosomes in Biology and Pathology, Vol. 5, J. T. Dingle and R. T. Dean, eds. North Holland Publishing Company, Amsterdam, 1976, pp. 185–200.

    Google Scholar 

  19. G. W. Evans,PhysioL Rev. 53, 535 (1973).

    PubMed  CAS  Google Scholar 

  20. I. Sternlieb,Gastroenterology 78, 1615 (1980).

    PubMed  CAS  Google Scholar 

  21. J. L. Nooijen, C. J. DeGroot, C. J. A. Van den Hamer, L. A. H. Monnens, J. Willemse, and M. F. Niermeijer,Pediatr. Res. 15, 284 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. H. W. Prins and C. J. A. Van den Hamer,J. Nutr. 110, 151 (1980).

    PubMed  CAS  Google Scholar 

  23. J. Camakaris, J. R. Mann, and D. M. Danks,Biochem. J. 180, 597 (1979).

    PubMed  CAS  Google Scholar 

  24. H. J. Sheedlo and M. L. Beck,Comp. Biochem. Physiol 71A, 341 (1982).

    Article  CAS  Google Scholar 

  25. F. O. Brady,Trends Biochem. Sci. 7, 143 (1982).

    Article  CAS  Google Scholar 

  26. R. R. Lindquist,Amer. J. Pathol. 53, 903 (1968).

    CAS  Google Scholar 

  27. E. N. McNatt, W. G. Campbell, Jr. and B. C. Callahan,Amer. J. Pathol. 64, 123 (1971).

    CAS  Google Scholar 

  28. H. A. Roels, J.-P. Buchet, A. Bernard, G. Hubermont, R. R. Lauwerys, and P. Masson,Environ. Health Perspect. 25, 91 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. A. Bernard, R. Lauwerys and P. Gengoux,Toxicology 20, 345 (1981).

    Article  PubMed  CAS  Google Scholar 

  30. E. S. Reynolds, R. L. Tannen and H. R. Tyler,Amer. J. Med. 40, 518 (1966).

    Article  Google Scholar 

  31. D. Banerjee, S. Onosaka, and M. G. Cherian,Toxicology 24, 95 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassman, C.A., Failla, M.L., Osborne, S.P. et al. Copper accumulation in the soluble and particulate fractions of renal cortex in the streptozotocin-diabetic rat. Biol Trace Elem Res 5, 475–487 (1983). https://doi.org/10.1007/BF02988940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988940

Index Entries

Navigation