Skip to main content
Log in

Functional equation underlying the quantum theory of fields

  • Published:
Il Nuovo Cimento A (1971-1996)

Summary

In the case of equality of vector and axial-vector couplings, useful to investigate the problem of mass generation for spinor fields by spontaneous symmetry breaking, all one-loop two-point Green's functions appear finite. The Mellin-transformed Schwinger-Dyson integral equations reduce to a finite-difference equation solved by a confluent hypergeometric function of the reduced kinematic variable. In this paper, the limiting process from the massive spinor to the massless case is treated in detail, all subsidiary terms being bounded and expressible in terms of Appell series and generalized confluent hypergeometric series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. M. Lebrun:Nuovo Cimento A,101, 395 (1989).

    Article  ADS  Google Scholar 

  2. J.-P. M. Lebrun:Lett. Nuovo Cimento,15, 402 (1976);44, 579 (1985).

    Article  Google Scholar 

  3. J. P. M. Lebrun:Nuovo Cimento A,91, 273 (1985).

    Article  ADS  Google Scholar 

  4. E. Kummer:J. für Math.,15, 39, 127 (1836).

    MathSciNet  Google Scholar 

  5. M. Abramowitz andI. Stegun:Handbook of Mathematical Functions (N.B.S., 1964), p. 374 and 13.6.3. p. 509.

  6. R. P. Boas:Entire Functions (Academic Press, New York, N.Y., 1954), p. 247.

    Google Scholar 

  7. Seee.g.,E. C. Titchmarsh:The Theory of Functions (Oxford University Press, N.Y., 1932), p. 186.

    Google Scholar 

  8. See,e.g.,E. T. Whittaker andG. N. Watson:A Course of Modern Analysis, §13.6 (Cambridge University Press, New York, N. Y., 1969), p. 276.

    Google Scholar 

  9. See ref. [6],, p. 183, theor. 10.2.11.

    Google Scholar 

  10. E. C. Titchmarsh:Introduction to the Theory of Fourier Integrals, theorem 32 (Clarendon Press, New York, N. Y., 1937), p. 47.

    MATH  Google Scholar 

  11. See ref. [10],, theorem 28, p. 46.

    MATH  Google Scholar 

  12. See ref. [8],, p. 352, example no. 2.

    Google Scholar 

  13. See ref. [5],M. Abramowitz andI. Stegun:Handbook of Mathematical Functions (N.B.S., 1964), p. 374 and 13.6.3, p. 509, 13.1.6, p. 504.

  14. See ref. [5],M. Abramowitz andI. Stegun:Handbook of Mathematical Functions (N.B.S., 1964), p. 374 and 13.6.3, p. 509, 13.2.5, p. 505.

  15. I. Gradshteyn andI. Ryzhik:Tables of Integrals, Series and Products (Academic Press, 1965), 9.261, p. 1067 and 3. 385, p. 321.

  16. See ref. [15]I. Gradshteyn andI. Ryzhik:Tables of Integrals, Series and Products (Academic Press, 1965), 3. 197, no. 5, p. 286.

  17. See ref. [15]I. Gradshteyn andI. Ryzhik:Tables of Integrals, Series and Products (Academic Press, 1965), 9.180, p. 1053 and 3.211, p. 287.

  18. See ref. [15]I. Gradshteyn andI. Ryzhik:Tables of Integrals, Series and Products (Academic Press, 1965), p. 1055, no. 11.

  19. See ref. [15]I. Gradshteyn andI. Ryzhik:Tables of Integrals, Series and Products (Academic Press, 1965), p. 1057, no. 9.185.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Institut de Physique B5, Sart-Tilman, B-4000 Liège.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebrun, J.P.M. Functional equation underlying the quantum theory of fields. Nuov Cim A 103, 1735–1742 (1990). https://doi.org/10.1007/BF02887298

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02887298

PACS 12.90

PACS 11.10

PACS 03.65

Navigation