Skip to main content
Log in

Environmental geochemistry of calcium isotopes: Applications of a new stable isotope approach

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

This paper summarizes isotope fractionation mechanism, analytical method and applications in environmental geochemistry of calcium isotopes. Calcium isotopic composition can be used to constrain material sources and study geological and environmental processes as the isotopic composition of calcium (δ44Ca) and fractionation processes depend on geochemical circumstances in nature. Recently, thanks to current advances in analytical technology of calcium isotopes, calcium isotopes are broadly used in biological and geochemical studies, such as the mechanism of plants imbibing nutrients through their roots, calcium transport in the environmental ecosystem, calcium cycle in oceans and paleo-oceans and paleo-climate. The elementary data show that δ44Ca values vary from −2.88‰ to 0.92‰ in natural samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian Immenhauser, Thomas F. Nägler, Thomas Steuber, and Dorothee Hippler (2005) A critical assessment of mollusk18O/16O, Mg/Ca, and44Ca/40Ca ratios as proxies for Cretaceous seawater temperature seasonality [J].Palaeogeography, Palaeoclimatology, Palaeoecology.215, 221–237.

    Article  Google Scholar 

  • Arnd J. Kuhn, Walter H. Schröder, and Josef Bauch (2000) The kinetics of calcium and magnesium entry into mycorrhizal spruce roots [J].Planta.210, 488–496.

    Article  Google Scholar 

  • Berner E. K. and Berner R. A. (1995)Global Environment: Water, Air and Geochemical Cycles (Chapter 8: Oceans, T3BN: 0133011690) [M]. Prentice Hall.

  • Berner R. A., Lasaga A. C., and Garrels R. M. (1983) The carbonatesilicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years [J].Amer. J. Sci. 283, 641–683.

    Google Scholar 

  • Bigeleisen J. and Mayer M. G. (1947) Calculation of equilibrium constants for isotopic exchange reactions [J].J. Chem. Phys. 15, 261–267.

    Article  Google Scholar 

  • Bonnett H. T. (1968) The root endodermis: fine structure and function [J].J. Cell Biol. 37, 199–205.

    Article  Google Scholar 

  • Boulyga S. F and Becker J. S. (2001) ICP-MS with hexa-pole collision cell for isotope ratio measurements of Ca, Fe and Se [J].J. Anal. Chem. 370, 618–623.

    Article  Google Scholar 

  • Broecker W. S. and Peng T.-H. (1982)Tracers in the Sea [M]. Eldigo Press, New York.

    Google Scholar 

  • Changa Veronica T.-C., Williamsb R. J. P., Makishimaa Akio et al. (2004) Mg and Ca isotope fractionation during CaCO3 biomineralization [J].Biochemical and Biophysical Research Communications.323, 79–85.

    Article  Google Scholar 

  • Charlou J. L., Fouquet Y., Donval J. P., Auzende J. M., Jean-Baptiste P., Stievenard M., and Michels S. (1996) Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19°S—Phase separation processes controlled by volcanic and tectonic activity [J].J. Geophys. Res. 101, 15899–15919.

    Article  Google Scholar 

  • Clarkson D. T. (1996) Root structure and sites of ion uptake. InPlant Roots, the Hidden Half (eds. Y. Waisel, A. Eshel, and U. Kafkafi, 2nd edition) [M]. pp. 483–510. Marcel Dekker, New York.

    Google Scholar 

  • Clarkson D. T. and Robards A. W. (1975) The endodermis, its structural development and physiological role. InThe Development and Function of Roots (eds. J. G. Torrey and D. T. Clarkson, Cabot Symposium 3) [M]. pp. 415–436. Academic Press, London.

    Google Scholar 

  • Cohen A. L., Layne G. D., Hart S. R., and Lobel P. S. (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implication for the paleotemperature proxy [J].Paleoceanography.16, 20–26.

    Article  Google Scholar 

  • Coleman M. L. (1971) Potassium-calcium dates from pegmatitic micas [J].Earth Planet. Sci. Lett. 12, 399–405.

    Article  Google Scholar 

  • Corless J. T. (1968) Observations on the isotopic geochemistry of calcium [J].Earth Planet. Sci. Lett. 4, 475–478.

    Article  Google Scholar 

  • De La Rocha C. L. and DePaolo D. J. (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic [J].Science.289, 1176–1178.

    Article  Google Scholar 

  • De Villiers S. (1998) Excess dissolved Ca in the deep ocean: A hydrothermal hypothesis [J].Earth Planet. Sci. Lett. 164, 627–641.

    Article  Google Scholar 

  • DePaolo D. J. and Finger K. L. (1991) High-resolution strontium isotope stratigraphy and biostratigraphy of the Miocene Monterey formation, central California [J].Geol. Soc. Am. Bull. 103, 112–124.

    Article  Google Scholar 

  • DePaolo D. J., Skulan J. L., and Owens T. L. (1995) Calcium isotopic fractionation in terrestrial materials [J].GSA Abstr. Prog. A 39.

  • Douville E., Charlou J. L., Oelkers E. H., Bienvenu P., Jove Colon C. F., Donval J. P., Fouquet Y., Prieur D., and Appriou P. (2002) The rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic ridge hydrothermal fluids [J].Chem. Geol. 184, 37–48.

    Article  Google Scholar 

  • Edmond J. M., Palmer M. R., Measures C. I., Brown E. T., and Huh Y. (1996) Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela [J].Geochim. Cosmochim. Acta. 60, 2949–2976.

    Article  Google Scholar 

  • Eisenhauer A., Nägler T., Stille P., Kramers J., Gussone N., Bock B., Fietzke J., Hippler D., and Schmitt A.-D. (2003) Proposal for an international agreement on Ca notation as result of the discussions from the workshops on stable isotope measurements in Davos (Goldschmidt 2002) and Nice (EGSAGU-EUG 2003) [J].Geostandards Newsletter.28(I), 145–151.

    Google Scholar 

  • Elderfield H. and Schultz A. (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean [J].Annu. Rev. Earth Planet. Sci. 24, 191–224.

    Article  Google Scholar 

  • Elderfield H., Bertram C. J., and Erez J. (1996) A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate [J].Earth Planet. Sci. Lett. 142, 409–423.

    Article  Google Scholar 

  • Erez J. (1978) Vital effect on stable-isotope composition seen in foraminifera and coral skeletons [J].Nature.273, 199–202.

    Article  Google Scholar 

  • Fallon S. J., McCulloch M. T., van Woesik R., and Sinclair D. J. (1999) Coral at their latitudinal limits: Laser ablation trace element systematics in Porites from Shirigai Bay, Japan [J].Earth Planet. Sci. Lett. 172, 221–238.

    Article  Google Scholar 

  • Ferris F. G., Wiese R. G., and Fyfe W. S. (1994) Precipitation of carbonate minerals by microorganisms: Implications for silicate weathering and the global carbon dioxide budget [J].Geomicrobio.12, 1–13.

    Google Scholar 

  • Fietzkea J., Eisenhauera A., Gussonea N. et al. (2004) Direct measurement of44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique [J].Chemical Geology.206, 11–20.

    Article  Google Scholar 

  • Fletcher I. R., McNaughton N. J., Pidgeon R. T., and Rosman K. J. R. (1997) Sequential closure of K-Ca and Rb-Sr isotopic systems in Archaean micas [J].Chem. Geol. 138, 289–301.

    Article  Google Scholar 

  • Gaillardet J., Dupré B., Louvat P., and Allègre C. J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J].Chem. Geol. 159, 3–30.

    Article  Google Scholar 

  • Galy A. (1999) Etude géochimique de l’ érosion actuelle de la chaîne himalayenne, Thèse de l’INPL [J].Nancy. 464.

  • Grenard S. (1991)Handbook of Alligators and Crocodiles [M]. Krieger, Flirida, USA.

    Google Scholar 

  • Gussone Nikolaus, Eisenhauer Anton, Heuser Alexander et al. (2003) Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera [J].Geochimica et Cosmochimica Acta.67, 1375–1382.

    Article  Google Scholar 

  • Halicz L., Galy A., Belshaw N. S., and O’Nions R. K. (1999) High precision measurement of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry MC-ICP-MS [J].J. Anal. At. Spectrom. 14, 1835–1838.

    Article  Google Scholar 

  • Han Guilin and Liu Congqiang (2001) Hydrogeochemistry of Wujiang River water in Guizhou Province, China [J].Chinese Journal of Geochemistry.20, 240–248.

    Article  Google Scholar 

  • Heumann K. G. and Lieser K. H. (1970) Difficulties in measuring the isotopic abundances of calcium with a mass spectrometer.Recent Dev. Mass Spectroscopy [C]. pp. 457–459. University of Tokyo Press, Tokyo, Japan.

    Google Scholar 

  • Heumann K. G. and Lieser K. H. (1972) Untersuchung von Calciumisotopieeffekten bei heterogenen Austauschgleichgewichten [J].Z. Naturforsch. 27b, 126–133.

    Google Scholar 

  • Heumann K. G., Klöppel H., and Sigl G. (1982) Inversion der Calcium-isotopenseparation an einem Ionenaustauscher durch Veränderung der LiCl-Elektrolytkonzentration [J].Z. Naturforsch. 37b, 786–787.

    Google Scholar 

  • Heuser A., Eisenhauer A., Gussone N., Bock B., Hansen B.T., and Nägler Th.F. (2002) Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique [J].International Journal of Mass Spectrometry.220, 385–397.

    Article  Google Scholar 

  • Hippler D., Schmitt A. D., Gussone N., Heuser A., Stille P., Eisenhauer A., and Nägler T. F. (2003) Ca isotopic composition of various standards and seawater [J].Geostand. Newsl. 27, 267–275.

    Article  Google Scholar 

  • Huh Y., Panteleyev G., Babich D., Zaitsev A., and Edmond J. M. (1998a) The fluvial geochemistry of the rivers of eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges [J].Geochim. Cosmochim. Acta. 62, 2053–2075.

    Article  Google Scholar 

  • Huh Y., Tsoi M.-Y., Zaitsev A., and Edmond J. M. (1998b) The fluvial geochemistry of the rivers of Eastern Sibria: I. Tributaries of the Lena river draining the sedimentary platform of the Siberian craton [J].Geochim. Cosmochim. Acta. 62, 1657–1676.

    Article  Google Scholar 

  • Karim A. (1999)Hydrochemistry and Isotope Systematics of the Indus River Basin [D]. PhD Thesis, University of Ottawa.

  • Kottke I. and Oberwinkler F. (1986) Mycorrhiza of forest trees: Structure and function [J].Trees. 1, 1–24.

    Article  Google Scholar 

  • Krishnaswami S., Trivedi J. R., Ramesh R., and Sharma K. K. (1992) Sr isotopes and Rb in the Ganges-Brahmapoutra river system: Weathering in the Himalaya, fluxes to the bay of Bengal and contributions to the evolution of oceanic87Sr/86Sr [J].Earth Planet. Sci. Lett. 109, 243–253.

    Article  Google Scholar 

  • Lear C. H., Elderfieldd H., and Wilson P. A. (2000) Cenozoic deepsea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite [J].Science.287, 269–272.

    Article  Google Scholar 

  • Marshall B. D. and DePaolo D. J. (1989) Calcium isotopes in igneous rocks and the origin of granite [J].Geochim. Cosmochim. Acta. 53, 917–922.

    Article  Google Scholar 

  • Marshall B. D. and DePaolo D. J. (1982) Precise age determinations and petrogenetic studies using the K-Ca method [J].Geochim. Cosmochim. Acta. 46, 2537–2545.

    Article  Google Scholar 

  • Marshall B. D., Woodard H. H., and DePaolo D. J. (1986) K-Ca-Ar systematics of authigenic sanidine from Wakau, Wisconsin, and the diffusivity of argon [J].Geology.14, 936–938.

    Article  Google Scholar 

  • McConnaughey T. A. (1989)13C and18O isotopic disequilibrium in biological carbonates: 1. Patterns [J].Geochim. Cosmochim. Acta. 53, 151–162.

    Article  Google Scholar 

  • McConnaughey T. A., Burdentt J., Whelan J. F., and Paull C. K. (1997) Carbon isotopes in biological carbonates: Respiration and photosynthesis [J].Geochim. Cosmochim. Acta. 61, 611–622.

    Article  Google Scholar 

  • Ming-hui H., Stallard R. F., and Edmond J. M. (1982) Edmond, major ion chemistry of some large Chinese rivers [J].Nature.298, 550–553.

    Article  Google Scholar 

  • Mitsuguchi T., Matsumoto E., Abe O., Uchida T., and Isdale P. (1996) Mg/Ca thermometry in coral skeletons [J].Science.274, 961–963.

    Article  Google Scholar 

  • Nägler T. F. and Villa I. M. (2000) In pursuit of the40K branching ratios: K-Ca and39Ar-40Ar dating of gem silicates [J].Chem. Geol. 169, 5–16.

    Article  Google Scholar 

  • Nägler T. F., Einsenhauer A., Müller A., Hemleben C., and Kramers J. (2000) The δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: New tool for reconstruction of past sea surface temperatures [J].Geochem. Geophys. Geosyst. 1, 1–10.

    Article  Google Scholar 

  • Nelson D. R. and McCulloch M. T. (1989) Petrogenic applications of the40K-40Ca radiogenic decay scheme—A reconnaissance study [J].Chem. Geol. (Isot. Geosci. Sect.)79, 275–293.

    Article  Google Scholar 

  • Nurnburg D. Bijrnal J., and Hemleben C. (1996) Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures [J].Geochim. Cosmochim. Acta. 60, 803–814.

    Article  Google Scholar 

  • O’Neil J. R. (1986) Theoretical and experimental aspects of isotopic fractionation. InReviews of Mineralogy. Stable Isotopes in High Temperature Geological Processes, 16 (eds. J. W. Valley, J. R. O’Neil, and H. P. Taylor) [M]. pp. 561–570. Mineralogical Society of America.

  • O’Neil J. R., Clayton R. N., and Mayeda T. K. (1969) Oxygen isotope fractionation in divalent metal carbonates [J].J. Chem. Phys. 51, 5547–5558.

    Article  Google Scholar 

  • Palmer M. R. and Edmond M. (1992) Controls over the strontium isotope composition of river water [J].Geochim. Cosmochim. Acta. 56, 2099–2111.

    Article  Google Scholar 

  • Perumalla C. J. and Peterson C. A. (1986) Deposition of Casparian bands and suberin lamellae in the exodermis and the endodermis of young corn and onion roots [J].Can. J. Bot. 64, 1873–1878.

    Google Scholar 

  • Peterson C. A., Murrmann M., and Steudle E. (1993) Location of the major barriers to water and ion movement in young roots of Zea mays L. roots [J].Planta. 190, 127–136.

    Article  Google Scholar 

  • Peterson C. A. and Enstone D. (1996) Functions of passage cells in the endodermis and exodermis of roots [J].Physiol. Plant. 97, 592–598.

    Article  Google Scholar 

  • Rubin R. P., Weiss G. B., and Putney J. W. (1985)Calcium in Biological Systems [M]. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Russell W. A., Papanastassiou D. A., and Tombrello T. A. (1978) Ca isotope fractionation on the Earth and other solar system materials [J].Geochim. Cosmochim. Acta. 42, 1075–1090.

    Article  Google Scholar 

  • Schmitt Anne-Désiréé, François Chabaux, and Peter Stille (2003a) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance [J].Earth Planetary Science Letters.6731, 1–16.

    Google Scholar 

  • Schmitt Anne-Désirée, Peter Stille, and Torsten Vennemann (2003b) Variations of the44Ca/40Ca ratio in seawater during the past 24 million years: Evidence from δ44Ca and δ18O values of Miocene phosphates [J].Geochimica et Cosmochimica Acta.67, 2607–2614.

    Article  Google Scholar 

  • Shih C.-Y., Nyquist L. E., Bogard D. D., and Wiesmann H. (1994) K-Ca and Rb-Sr dating of two lunar granites: Relative chronometer resetting [J].Geochim. Cosmochim. Acta. 58, 3101–3116.

    Article  Google Scholar 

  • Sime N. G., De La Rocha C. L., and Galy A. (2005) Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera [J].Earth and Planetary Science Letters. 232, 51–66.

    Article  Google Scholar 

  • Skulan J. and DePaolo D. J. (1999) Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates [J].Proc. Natl. Acad. Sci. U. S. A. 96, 13709–13713.

    Article  Google Scholar 

  • Skulan J., DePaolo D. J., and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle [J].Geochim. Cosmochim. Acta. 61, 2505–2510.

    Article  Google Scholar 

  • Stahl W. and Wendt L. (1968) Fractionation of calcium isotopes in carbonate precipitation [J].Earth Planet. Sci. Lett. 5, 184–186.

    Article  Google Scholar 

  • Stumm W. (1992)Chemistry of the Solid-Water Interface [M]. Wiley, New York.

    Google Scholar 

  • Ter Kuile B., Erez J., and Padan E. (1989) Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera [J].Mar. Biol. 103, 241–251.

    Article  Google Scholar 

  • Urey H. C. (1947) The thermodynamic properties of isotopic substances [J].J. Chem. Soc. 69, 562–581.

    Article  Google Scholar 

  • Van Fleet D. S. (1961) Histochemistry and function of the endodermis [J].Bot Rev. 27, 166–220.

    Article  Google Scholar 

  • Wilkinson B. H. and Algeo T. J. (1989) Sedimentary carbonate record of calcium-magnesium cycling [J].Am. J. Sci. 289, 1158–1194.

    Google Scholar 

  • Williams R. J. P. (1974) Calcium ions: Their ligands and their function [J].Biochem. Soc. Symp. 39, 133–140.

    Google Scholar 

  • Williams R. J. P. (1989) Calcium and cell steady states. InCalcium Binding Proteins in Normal and Transformed Cells (ed. C. W. Heizmann) [M]. pp. 7–16. Plenum Publishing, New York.

    Google Scholar 

  • Zeebe R. E. (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes [J].Geochim. Cosmochim. Acta. 63, 2001–2007.

    Article  Google Scholar 

  • Zeier J., Ruel K., Ryser U., and Schreiber L. (1999) Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots [J].Planta.209, 1–12.

    Article  Google Scholar 

  • Zhu P. and MacDougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle [J].Geochim. Cosmochim. Acta. 62, 1691–1698.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was supported financially by the Important Research Orientation Project of the Chinese Academy of Sciences (KZCX3-SW-140).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Liu, C., Han, G. et al. Environmental geochemistry of calcium isotopes: Applications of a new stable isotope approach. Chin. J. Geochem. 25, 184–194 (2006). https://doi.org/10.1007/BF02872181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872181

Key words

Navigation