Skip to main content
Log in

Stabilization of proteases by entrapment in a new composite hydrogel

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new one-step procedure for entrapping proteases into a polymeric composite calcium alginate-poly(N-vinyl caproladam) hydrogel was developed that provided 75–90% retention of the activity of entrapped enzymes compared to soluble ones. Properties of entrapped carboxypeptidase B, trypsin, and thrombin were investigated. The immobilized enzymes were active within a wide pH range. The temperature optima of entrapped trypsin and carboxypeptidase B were approx 25°C higher than that of the soluble enzymes, and the resistance to heating was also increased. The effects of various polar and nonpolar organic solvents on the entrapped proteases were investigated. The immobilized enzymes retained their activity within a wide concentration range (up to 90%) of organic solvents. Gel-entrapped trypsin and carboxypeptidase (CPB) were successfully used for obtaining human insulin from recombinant proinsulin. The developed stabilization method can be used to catalyze various reactions proceeding within wide pH and temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy, J. F. (1985), inHandbook of Enzyme Biotechnology, 2nd ed., Wiseman, A., ed., Ellis Horwood Limited, pp. 147–207.

  2. Sudi, P., Dala, E., and Szayani, B. (1989),Appl. Biochem. Biotechnol. 22, 31–43.

    Article  CAS  Google Scholar 

  3. Wu, H., White, G. C., Workman, E. F., Jenzano, J. J. W., and Lundblad, R. L. (1992),Thromb. Res. 67, 419–427.

    Article  CAS  Google Scholar 

  4. Markvicheva, E. A., Kuzkina, I. F., Pashkin, I. I., Plechko, T. N., Kirsh, Yu. E., and Zubov, V. P. (1991),Biotechnol. Techniques 5, 223–226.

    Article  CAS  Google Scholar 

  5. Donova, M. V., Kuzkina, I. F., Arinbasarova, A. Yu., Pashkin, I.I., Markvicheva, E. E., Baklashova, T. G., Sukhodolskaya, G. V., Fokina, V. V., Kirsh, Yu. E., Koshcheyenko, K. A., and Zubov, V. P. (1993),Biotechnol. Techniques 7, 415–422.

    Article  CAS  Google Scholar 

  6. Galaev, I. Yu. and Mattiasson, B. (1992),Biotechnol. Techniques 6, 353–356.

    Article  CAS  Google Scholar 

  7. Kirsh, Yu. E., Galaev, I. Yu., Karaputadze, T. M., Margolin, A. L., and Shvyadas, V. K. (1987),Biotechnologiya 3, 184–189 (in Russian).

    CAS  Google Scholar 

  8. Markvicheva, E. A., Bronin, A. S., Kudryavtseva, N. E., Rumsh, L. D., Kirsh, Yu. E. and Zubov, V. P. (1994),Biotechnol. Techniques 8, 143–148.

    Article  CAS  Google Scholar 

  9. Ivanova, G. P. and Moskvichev, B. V. (1981),Bioorgan. Khim. 7, 92–97 (in Russian).

    CAS  Google Scholar 

  10. Kirsh, Yu. E., Sus, T. A., Karaputadze, T. M., Kobyakov, V. V., Sinitzina, L. A., and Ostrovskii, S. A. (1979),Vysokomol. Soed. A21, 2734–2740 (in Russian).

    Google Scholar 

  11. Anufrieva, E. V., Nekrasova, T. N., Lushik, V. B., Fedotov, Yu. A., Kirsh, Yu. E., and Krakovyak, M. G. (1992),Vysokomol. Soed. B34, 31–34 (in Russian).

    Google Scholar 

  12. Lundblad, R. L. (1971),Biochemistry 10, 2501–2506.

    Article  CAS  Google Scholar 

  13. Kezdy, F. J., Lorand, L., and Miller, K. D. (1965),Biochemistry 4, 2302–2308.

    Article  CAS  Google Scholar 

  14. Folk, J. E., Piez, K. A., Carrol, W. R., and Gladner, J. (1960),J. Biol. Chem. 235, 2272.

    CAS  Google Scholar 

  15. Biggs, R., ed. (1976),Human Blood Coagulation, Heamostasis and Thrombosis, 2nd ed., Blackwell Scientific Publications, Philadelphia.

    Google Scholar 

  16. Svendsen, L., Blomback, B., Blomback, M., and Olsson, P. I. (1972),Thromb. Res. 1(3), 2867–2878.

    Article  Google Scholar 

  17. Ugarova, N. N. (1982), inIntroduction in Appl. Enzymol, Berezin I. V. and Martinek, K., eds., Moscow University, Moscow, pp. 156–179.

    Google Scholar 

  18. Gurta, M. N.(1992),Eur. J. Biochem. 203, 25–32.

    Article  Google Scholar 

  19. Mozhaev, V. V., Khmelnitsky, Yu. L., Sergeeva, M. V., Belova, A. B., Klyachko, N. L., Levashov, A. V., and Martinek, K. (1989),Eur. J. Biochem. 184, 597–602.

    Article  CAS  Google Scholar 

  20. Fukui, S., Tanaka, A., and Iida, T. (1987), inBiocatalysis in Organic Media, Laane, C., Tramper, J., Lilly, M. D., eds, Elsevier, Amsterdam, pp. 21–41.

    Google Scholar 

  21. Klibanov, A. M., Semenov, A. N., Samochin, G. P., and Martinek, K. (1978),Bioorgan. Khim. 4, 82–88 (in Russian).

    CAS  Google Scholar 

  22. Arnold, F. H. (1990),Trends Biotechnol. 8, 224–249.

    Article  Google Scholar 

  23. Kirsh, Yu. E. (1993),Prog. Polym. Sci. 18, 519–542.

    Article  CAS  Google Scholar 

  24. Stiernberg, J., Redin, W. R., Warner, W. S., and Carney, D. H. (1993),Thromb. Haem ostasis 70 (1), 158–162.

    CAS  Google Scholar 

  25. Miller-Andersson, M., Gaffney, P. J., and Seghatchian, M. J. (1980),Thromb. Res. 20, 109–122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markvicheva, E.A., Tkachuk, N.E., Kuptsova, S.V. et al. Stabilization of proteases by entrapment in a new composite hydrogel. Appl Biochem Biotechnol 61, 75–84 (1996). https://doi.org/10.1007/BF02785690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785690

Index entries

Navigation